Muutke küpsiste eelistusi

E-raamat: Machine Tool Metrology: An Industrial Handbook

  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319251097
  • Formaat - PDF+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319251097

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology , this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies.Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject.Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field.

Machine Tools - an Introduction.- Laser Instrumentation and Calibration.- Optical Instrumentation for Machine Calibration.- Telescoping Ballbars and other Diagnostic Intrumentation.- Artefacts for Machine Verification.- Machine Tool Performance - Spindle Analysis; Corrosion and Oil Debris Monitoring; Thermography.- Uncertainty of Measurement and Statistical Process Control.- Machine Tool Reliability.- Total Productive Maintenance (TPM) and Reliability-centred Maintenance (RCM).
1 Measurement and Machine Tools-An Introduction 1(200)
1.1 Why the Need for Accurate and Precise Machine Tools-a Brief History
1(3)
1.2 The Early Historical Development of a Linear Measurements
4(10)
1.2.1 The Historical Development of the Metre and the International Bureau of Weights and Measures (BIPM)
9(3)
1.2.2 Optical and Laser Length Measurement
12(2)
1.3 International Standards Laboratories-Why They Are Essential
14(18)
1.3.1 What Is Traceability and Why Is It Necessary?
15(4)
1.3.2 Auditing Metrology: Artefacts, Instrumentation and Equipment
19(3)
1.3.3 National Metrological Research and Calibration Laboratories
22(10)
1.4 Machine Tool's Machining Capabilities
32(5)
1.5 Metrology Equipment Utilised for Basic Machine Tool Calibration Checks
37(25)
1.5.1 Gauge Blocks
37(4)
1.5.2 Length Bars
41(3)
1.5.3 Combination Angle Gauges
44(2)
1.5.4 Precision Polygons
46(2)
1.5.5 Dial Gauges and Dial Test Indicators
48(5)
1.5.6 Straightedges and Cylindrical Precision Mandrels
53(6)
1.5.7 Precision- and Cylindrical Squares
59(3)
1.6 A Concise History of Machine Tool Calibration
62(5)
1.7 Notable Chronology in Machine Tool Testing
67(2)
1.8 Achievable Accuracy and Precision of Machine Tools
69(5)
1.9 Accuracy and Precision-Produced by a Machine Tool
74(10)
1.10 Designation of Machine Tool Axes and Kinematics
84(6)
1.11 Configurations of Machining and Turning Centres
90(17)
1.11.1 Orthogonal Machine Tools
90(1)
1.11.2 Modular, or Reconfigurable Machine Tools
90(3)
1.11.3 Modular Machine Tool Construction
93(2)
1.11.4 Turning and Machining Centre Configurations
95(6)
1.11.5 CNC Controller Developments
101(2)
1.11.6 Non-orthogonal/Parallel Kinematic Machines (PKM)
103(4)
1.12 Major Elements in a Machine Tool's Construction
107(70)
1.12.1 Headstocks for Turning Centres and Spindles for Machining Centres
108(6)
1.12.2 CNC Conventional Drive Systems and Recirculating Ballscrew s
114(12)
1.12.3 Machine Tool-Bearing Categories
126(17)
1.12.4 Constructional Elements for Machine Tools
143(11)
1.12.5 Linear Motor Drive Systems
154(5)
1.12.6 Linear and Rotary Axis Positioning/Monitoring Systems
159(18)
1.13 Finite Element Analysis (FEA) of Machine Tools
177(6)
1.13.1 FEA of CNC Machine Tools
179(1)
1.13.2 Industrial Machine Tool Case Study in FEA-for a Machining Centre
180(3)
1.14 Basic Construction of Coordinate Measuring Machines (CMMs)
183(12)
1.14.1 Introduction to the CMM
183(4)
1.14.2 CMM Construction
187(1)
1.14.3 CMM-Mechanical Probe
188(2)
1.14.4 Recent CMM Probing Systems
190(4)
1.14.5 Micro-Metrology Probes
194(1)
References
195(6)
2 Laser Instrumentation and Calibration 201(78)
2.1 Introduction to Lasers
201(13)
2.1.1 Why Is Calibration so Important?
202(1)
2.1.2 Calibration of Laser Interferometers
203(2)
2.1.3 Laser Calibration-Potential Error and Uncertainty Sources
205(6)
2.1.4 Introduction to Laser Machine Calibration
211(3)
2.2 Methods of Machine Acceptance Tests-The Basis for Verification
214(31)
2.2.1 ISO 230 Machine Tool Standards-Previous and Current Calibration Procedures
214(5)
2.2.2 ISO 230-Laser Calibration Procedures on CNC Machine Tools
219(3)
2.2.3 Laser Diagonal Displacement Test
222(8)
2.2.4 Laser Step Diagonal Test
230(6)
2.2.5 Potential Errors-In Three Axes Machine Tools
236(9)
2.3 ISO 10360 for Coordinate Measuring Machine (CMM) Calibration and Verification
245(10)
2.3.1 Coordinate Measuring Machine (CMM}-Fundamentals
246(7)
2.3.2 CMM-Environmental Conditions
253(1)
2.3.3 CMM Performance Standards
253(2)
2.4 Calibration of a Rotary Table-With a Rotary Indexer
255(6)
2.4.1 AxisSet™ Checkup-Utilised for Machine Tool Alignments
259(2)
2.5 Machine Tool Linear Axes-Factors Affecting Their Accuracy and Precision
261(3)
2.6 Laser Tracker-Instrumentation, Testing and Applications
264(10)
2.6.1 Laser Tracker-Calibration Procedures
267(1)
2.6.2 Laser Tracker-Frequently Asked Questions
268(2)
2.6.3 Laser Tracker-Machine-Based Research Applications
270(4)
References
274(5)
3 Optical Instrumentation for Machine Calibration 279(66)
3.1 Basic Principles of Light
279(8)
3.1.1 Optical Alignment-Basic Principles
284(3)
3.2 Autocollimation Principles
287(13)
3.2.1 Basic Design of an Autocollimator
287(3)
3.2.2 Autocollimator-its Optical Operational Principle
290(1)
3.2.3 Digital Autocollimators
291(5)
3.2.4 Precision Polygons for Angular Measurements
296(1)
3.2.5 Angular Calibration of a Precision Polygon
297(2)
3.2.6 Calibration of a Rotary Table
299(1)
3.3 The Micro-optic Dual-Axis Autocollimator, or Angledekkor
300(5)
3.3.1 Optical Squares and Prisms
302(3)
3.4 Alignment Telescope-Principles of Alignment
305(18)
3.4.1 Targets for Autocollimators
316(1)
3.4.2 Auto-reflection and Autocollimation
317(2)
3.4.3 Calculating Mirror Gradients
319(1)
3.4.4 Effects of the Earth's Curvature and Atmospheric Refraction
320(3)
3.5 Precision Spirit Level
323(5)
3.6 Optical Instrumentation-Clinometers
328(5)
3.7 Talyvel-Precision Level
333(9)
3.7.1 Software Programs-for Precision Electronic Levels
337(5)
References
342(3)
4 Telescoping Ballbars and Other Diagnostic Instrumentation 345(36)
4.1 Telescoping Ballbars
345(21)
4.1.1 Machine Tool Health Checks-The Reason Why They Are Necessary
345(1)
4.1.2 Telescoping Ballbars-Historical Development and Operation
346(8)
4.1.3 Telescoping Ballbar-In More Detail
354(1)
4.1.4 Ballbar Testing-Why the Need?
354(2)
4.1.5 Wireless Telescoping Ballbar
356(3)
4.1.6 Telescoping Ballbar-A Closer Examination of Machine Tool Inaccuracies
359(1)
4.1.7 Ballbars-Other Instrumental Variations
360(6)
4.2 Grid Encoders and Linear Comparator Systems
366(6)
4.3 Rotary Analyzer System and Calibration Rings
372(3)
4.4 Calibration Spheres and Rings-for CMMs
375(3)
References
378(3)
5 Artefacts for Machine Verification 381(92)
5.1 Introduction to Artefact Verification-For Interim CMM Checks
381(12)
5.1.1 An Introduction to CMM Error Sources
382(1)
5.1.2 ISO 10360 and CMM Performance
382(3)
5.1.3 Material Standard of Size and CMM Accuracy
385(7)
5.1.4 CMM-Length Measurement and Maximum Permissible Errors
392(1)
5.2 Purpose-Made Artefacts-Testpieces
393(1)
5.3 General Artefacts for CMM Verification
394(12)
5.3.1 Step Gauge-Its Calibration
394(1)
5.3.2 Step Gauge-For Verification of the Accuracy of CMMs
395(4)
5.3.3 Machine Checking Gauge (MCG)
399(7)
5.4 Ball- and Hole-Plates
406(10)
5.4.1 The 3-D Ball-Plates
410(3)
5.4.2 Ball- and Cube-Tetrahedrons
413(3)
5.5 Large Reference Artefact-For Large-Scale CMM Verification
416(8)
5.5.1 Large Reference Artefact (LRA)-Design and Construction
418(1)
5.5.2 Large Reference Artefact-Reference Surfaces
419(3)
5.5.3 Large Reference Artefact-Artefact Positioning, Alignment and Testing
422(1)
5.5.4 Large Reference Artefact-Summary and Concluding Remarks
423(1)
5.6 Machinable-Artefacts for Machine Tool Verification
424(14)
5.6.1 Introduction to Machinable Testpiece Standards
424(2)
5.6.2 Artefact Stereometry-For Dynamic Machine Tool and Comparative Assessment
426(1)
5.6.3 Stereometric Artefact-Conceptual Design
427(2)
5.6.4 Stereometric Artefact-Machining Trials
429(6)
5.6.5 Stereometric Artefact-Machined and Metrological Results
435(3)
5.7 Small Coordinate Measuring Machine (SCMM)
438(5)
5.7.1 Small Coordinate Measuring Machine-Design Requirements
438(3)
5.7.2 Small Coordinate Measuring Machine-Interferometers, Autocollimators and Probe Design
441(2)
5.8 A Novel 3-D-Nano Touch Probe-For an Ultra-Precision CMM
443(4)
5.8.1 Probing Force and Surface Damage
445(1)
5.8.2 The 3-D-Nano Touch Probe-Constructional Details
445(2)
5.9 Robotic Arms
447(10)
5.9.1 Industrial Robotics-Their Historical Development
448(1)
5.9.2 Defining Robotic Parameters
449(2)
5.9.3 Robotic Calibration
451(2)
5.9.4 Robotic Calibration Devices and Techniques
453(4)
5.10 Parallel Kinematic Mechanism (PKM)-EquatorTm Gauge
457(4)
5.10.1 Theory of Operation-Of the PKM
459(1)
5.10.2 Calibrating This PKM
460(1)
5.11 Articulated Arm CMM (AACMM)
461(7)
5.11.1 Articulated Arm CMMs-In More Detail
465(2)
5.11.2 Verification of Articulated Arm CMM (AACMM)
467(1)
References
468(5)
6 Machine Tool Performance: Spindle Analysis; Corrosion and Condition Monitoring; Thermography 473(78)
6.1 Machine Tool Spindle Analysis
473(22)
6.1.1 Design Trends in Machine Tool Spindles
475(3)
6.1.2 Machine Tool Spindle Failure Modes
478(7)
6.1.3 Complete Machine Tool Retrofits and Rebuilds
485(10)
6.2 Monitoring and Diagnostics of Machine Tool Spindles
495(3)
6.2.1 Spindle Monitoring Instrumentation-For Machine Tools
496(1)
6.2.2 Thermal Distortion-At the Spindle
496(1)
6.2.3 Spindle Error Motions
497(1)
6.3 Spindle Error Analyser (SEA) Instrumentation
498(9)
6.3.1 Spindle Error Analyser-The Master Target and Its Fixtures-Spindle Hardware
503(1)
6.3.2 Spindle Error Analyser-Spindle Software
504(1)
6.3.3 SEA-Thermal Drift-Resulting from Expansion of Materials
504(1)
6.3.4 SEA-Thermal Tests
505(1)
6.3.5 SEA-How Spindle Measurement Data is Displayed
506(1)
6.3.6 SEA-Spindle Error Plots: For Analysis and Rectification of Bearings
506(1)
6.4 Corrosion-Basic Concepts
507(12)
6.4.1 Understanding Metallic Corrosion-In Brief
510(4)
6.4.2 Machine Tool Spalling-of Bearings and Gears
514(1)
6.4.3 Bearing Failure Modes-With Hard Particle Lubricant Contamination
514(4)
6.4.4 Bearing Contamination
518(1)
6.5 Condition Monitoring-Of Machine Tools
519(8)
6.5.1 Condition Monitoring-Historical Perspective
521(2)
6.5.2 Types of Condition Monitoring Systems
523(1)
6.5.3 Condition Monitoring Systems-Establishing a Programme
524(3)
6.6 Thermographical Inspection
527(19)
6.6.1 Electromagnetic Spectrum-A Brief and Introductory History
527(5)
6.6.2 Thermography-Further Information
532(3)
6.6.3 Thermal Imaging Cameras
535(2)
6.6.4 Emissivity-Thermal Radiation
537(1)
6.6.5 Advantages and Limitations of Thermography
538(1)
6.6.6 Effects of Temperature Variation in Machine Tools
539(4)
6.6.7 Controlling Component Part Temperatures
543(1)
6.6.8 Minimising Heat Sources
543(1)
6.6.9 Temperature Control Strategies
544(2)
References
546(5)
7 Uncertainty of Measurement and Statistical Process Control 551(58)
7.1 Conformance, Traceability and Measurement Uncertainty
551(4)
7.2 Task-Specific Measurement Uncertainty
555(6)
7.2.1 Traceability Reporting
555(3)
7.2.2 Conformance Rules-for Metrological Equipment
558(3)
7.3 Measurement Uncertainty-Typically Relating to Machine Tools and CMMs
561(24)
7.3.1 Statements of Compliance-The Effect of Uncertainty
566(1)
7.3.2 Uncertainty Issues
566(1)
7.3.3 Statistical Measures-In Uncertainty Calculations
567(7)
7.3.4 Origins of Uncertainties
574(1)
7.3.5 Calculation of Measurement Uncertainty
575(5)
7.3.6 Analysis of Uncertainty: Uncertainty Budgets
580(4)
7.3.7 Reducing Measurement Uncertainty
584(1)
7.4 Statistical Process Control (SPC)-In Production Output on Machine Tools
585(13)
7.4.1 What is Statistical Process Control?
586(1)
7.4.2 Control Chart Functions
587(2)
7.4.3 Control Chart-Background Information
589(2)
7.4.4 Control Chart Limits
591(3)
7.4.5 Reading Control Charts
594(2)
7.4.6 Computerised SPC Charts
596(2)
7.5 Machine and Process Capability Studies
598(7)
7.5.1 Machine and Process Capability Studies-Typical Procedure
598(1)
7.5.2 Machine Capability Study-In Detail
599(2)
7.5.3 Machine Tool Capability Study-Practical Example
601(4)
7.5.4 Final Concluding Remarks
605(1)
References
605(4)
Appendices 609(62)
Index 671
Graham T. Smith is the retired Head of the Technology Research Centre which was a specialised section within Southampton Solent University. He worked as a Professor of Industrial Engineering there, and was one of the three original Founder Members of the Laser Metrology & Machine Performance International Conferences (LAMDAMAP, which has been running from 1993 to the present. Professor Smith has lectured-widely within the UK at industrial and exhibition venues, likewise across a diverse-range of university campuses in both Europe and North America, moreover he has continued to maintain close-links in the related machine tool and metrology industries. He has also previously refereed technical submissions for The Machine Tool Technologies Association (now known as the MTA) as a judge for the biennial MACH-awards and has regularly undertaken book and journal reviews, as well as periodic technical articles for the Industrial Press. Furthermore, he has also acted as an Expert Witness for many engineering/metrological litigation cases for some years and has also produced certain specific end-user products for a range of international companies, during last 50-plus years.