Muutke küpsiste eelistusi

E-raamat: Machine Translation: 18th China Conference, CCMT 2022, Lhasa, China, August 6-10, 2022, Revised Selected Papers

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 18th China Conference on
Machine Translation, CCMT 2022, held in Lhasa, China, during August 6–10, 2022.

The 16 full papers were included in this book were carefully reviewed and selected from 73 submissions.
PEACook: Post-Editing Advancement Cookbook.- Hot-start Transfer Learning
combined with Approximate Distillation for Mongolian- Chinese Neural Machine
Translation.- Review-based Curriculum Learning for Neural Machine
Translation.- Multi-Strategy Enhanced Neural Machine Translation for Chinese
Minority Language.- Target-side Language Model for Reference-free Machine
Translation Evaluation.- Life Is Short, Train It Less: Neural Machine
Tibetan-Chinese Translation Based on mRASP and Dataset
Enhancement.- Improving the Robustness of Low-Resource Neural Machine
Translation with Adversarial Examples.- Dynamic Mask Curriculum Learning for
Non-Autoregressive Neural Machine Translation.- Dynamic Fusion Nearest
Neighbor Machine Translation via DempsterShafer Theory.- A Multi-tasking and
Multi-stage Chinese Minority Pre-Trained Language Model.- An improved
Multi-task Approach to Pre-trained Model Based MT
Quality Estimation.- Optimizing Deep Transformers for Chinese-Thai
Low-Resource Translation.- HW-TSC Submission for CCMT 2022 Translation
Quality Estimation Task.- Effective Data Augmentation Methods for CCMT
2022.- NJUNLPs Submission for CCMT 2022 Quality Estimation Task.- ISTICs
Thai-to-Chinese Neural Machine Translation System for CCMT 2022.