Muutke küpsiste eelistusi

E-raamat: Machine Translation: A View from the Lexicon

  • Formaat: 458 pages
  • Sari: Artificial Intelligence
  • Ilmumisaeg: 29-Jun-1993
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290838
  • Formaat - PDF+DRM
  • Hind: 72,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Machine Translation: A View from the Lexicon
  • Formaat: 458 pages
  • Sari: Artificial Intelligence
  • Ilmumisaeg: 29-Jun-1993
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290838

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Describes a novel, cross-linguistic approach to machine translation that solves certain classes of syntactic and lexical conceptual structures that can be composed and decomposed in language-specific ways. This approach allows the translator to operate uniformly across many languages, while still accounting for knowledge that is specific to each language. Annotation copyright Book News, Inc. Portland, Or.

This book describes a novel, cross-linguistic approach to machine translation that solves certain classes of syntactic and lexical divergences by means of a lexical conceptual structure that can be composed and decomposed in language-specific ways. This approach allows the translator to operate uniformly across many languages, while still accounting for knowledge that is specific to each language.

The translation model can be used to map a source-language sentence to a target-language sentence in a principled fashion. It is built on the basis of a parametric approach, making it easy to change from one language to another (by setting syntactic switches for each language and providing lexical descriptions for each language) without having to write a whole new processor for each language.

Dorr's approach advances the field of machine translation in a number of important ways: it provides a uniform processor in which the same syntactic and lexical-semantic processing modules are used for each language; it is interlingual, able to derive an underlying language-independent form of the source language that allows any of the three target languages - Spanish, English, or German - to be produced from this form; and it describes a systematic mapping between the lexical-semantic level and the syntactic level that allows the appropriate target-language words to be selected and realized, despite the potential for syntactic and lexical divergences.
Introduction ix
I Anatomy and Physiology
1(144)
Experience-Dependent Plasticity of Intracortical Connections
3(16)
Siegrid Lowel
Wolf Singer
Adaptation of Inputs in the Somatosensory System
19(24)
Hubert R. Dinse
Michael M. Merzenich
Plasticity of Receptive Fields in Early Stages of the Adult Visual System
43(24)
Ulf T. Eysel
Neuronal Representation of Object Images and Effects of Learning
67(16)
Keiji Tanaka
Electrophysiological Correlates of Perceptual Learning
83(12)
Aniek Schoups
Perceptual Learning and the Development of Complex Visual Representations in Temporal Cortical Neurons
95(30)
David L. Sheinberg
Nikos K. Logothetis
Functional Reorganization of Human Cerebral Cortex and Its Perceptual Concomitants
125(20)
Annette Sterr
Thomas Elbert
Brigitte Rockstroh
II Low-Level Psychophysics
145(88)
Learning to Understand Speech with the Cochlear Implant
147(14)
Graeme M. Clark
Adaptation and Learning in the Visual Perception of Gratings
161(16)
Adriana Fiorentini
Nicoletta Berardi
Plasticity of Low-Level Visual Networks
177(20)
Barbara Zenger
Dov Sagi
Learning to Perceive Features below the Foveal Photoreceptor Spacing
197(22)
Manfred Fahle
Specificity versus Invariance of Perceptual Learning: The Example of Position
219(14)
Marcus Dill
III Higher-Level Psychophysics
233(102)
The Role of Insight in Perceptual Learning: Evidence from Illusory Contour Perception
235(18)
Nava Rubin
Ken Nakayama
Robert Shapley
The Role of Attention in Learning Simple Visual Tasks
253(20)
Merav Ahissar
Shaul Hochstein
High-Level Learning of Early Visual Tasks
273(26)
Pawan Sinha
Tomaso Poggio
Learning to Recognize Objects
299(18)
Guy Wallis
Heinrich Bulthoff
Learning New Faces
317(18)
Vicki Bruce
Mike Burton
IV Modeling
335(46)
Models of Perceptual Learning
337(18)
Shimon Edelman
Nathan Intrator
Learning to Find Independent Components in Natural Scenes
355(12)
Anthony J. Bell
Terrence J. Sejnowski
Top-Down Information and Models of Perceptual Learning
367(14)
Michael H. Herzog
Manfred Fahle
Glossary 381(6)
References 387(56)
Contributors 443(4)
Index 447