Muutke küpsiste eelistusi

E-raamat: Macroporous Polymers: Production Properties and Biotechnological/Biomedical Applications

Edited by (Indian Institute of Technology, Kampur, India), Edited by (Lund University, Sweden), Edited by (Lund University, Sweden)
  • Formaat: 530 pages
  • Ilmumisaeg: 23-Dec-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040170861
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 530 pages
  • Ilmumisaeg: 23-Dec-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040170861
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Macroporous polymers are rapidly becoming the material of choice for many tissue engineering, bioseparation, and bioprocessing applications. However, while important information is scattered about in many different publications, none, to date, have drawn this information together in user-friendly format, until now. Meeting the need for an accessible, organized resource, Macroporous Polymers: Production Properties and Biotechnological/Biomedical Applications supplies a systematic presentation of the production, characterization, and application of these polymers.

The text discusses traditional methods of production, including phase separation polymerization, leaching, foaming, and double emulsion as well as emerging methods such as cryogelation. The chapters also detail the various applications of macroporous gels for the separation of biomolecules and for the cultivation of mammalian cells in bioreactors and for tissue engineering. The book underscores existing and potential problems while providing a solid background on which to base the evaluation of the scientific and commercial value of new developments.

The editors bring together different viewpoints, summarize state-of-the-art achievement, and cover applications in biotechnology, downstream processing, and biomedicine. They have collected the latest research and molded it into a cohesive reference, closing the gap between macromolecular design and production of these gels/polymers and their possible applications. With the intensity of development in this area likely to increase, the foundation provided by this book can help you meet the challenges inherent in the development of new and better materials for new and better applications.
Introduction vii
Contributors ix
Section I Production of Macroporous Polymers
Production of Macroporous Polymeric Materials by Phase Separation Polymerization
3(20)
Oguz Okay
Introduction
3(1)
Formation Mechanism of Macroporous Structures
4(5)
Properties versus Preparation Conditions of Macroporous Materials
9(9)
Concluding Remarks
18(1)
References
19(4)
Production and Properties of Cryogels by Radical Polymerization
23(26)
Fatima M. Plieva
Igor Yu. Galaev
Bo Mattiasson
Introduction
23(1)
Concept of Cryogel Formation via Free-Radical Polymerization at Subzero Temperatures
24(12)
Freezing Rate and Freezing Temperature
25(4)
Concentration and Composition of Gel Precursors in the Initial Reaction Mixture
29(4)
The Effect of Initiator Content on Cryogel Porous Structure
33(2)
Influence of Solvent on Porous Structure of Cryogels
35(1)
Control over the Free-Radical Polymerization at Subzero Temperatures
36(3)
Preparation of Macroporous Cryogels with Controlled Degradability via Free-Radical Polymerization
39(2)
Preparation of Functionalized Cryogels via Free-Radical Polymerization
41(1)
Main Applications for Macroporous Cryogels Prepared via Free-Radical Polymerization
42(1)
Concluding Remarks
43(1)
References
43(6)
Macroporous Polymer Scaffolds through Leaching Processes
49(34)
Michael C. Hacker
Kristina Ambrosch
Michaela Schulz-Siegmund
Introduction
50(2)
Leaching Processes for the Fabrication of Macroporous Solids
52(1)
Porogen Embedding-Composite Leaching (PE/CL) Techniques
53(10)
Solvent Casting-Particulate Leaching (SC/PL) and Derived Techniques
53(5)
PE/CL with Controlled Porogen Assembly or Porogen Fusion
58(4)
Compression-Melt Molding: Porogen Embedding without Organic Solvents
62(1)
Porogen Dispersion-Composite Leaching and Solidification (PD/CLS) Techniques
63(3)
Combined Techniques Involving Leaching Processes
66(3)
Combinations of Leaching with Freeze-Drying or Phase Separation Processes
66(1)
Combinations of Porogen Bonding, Freeze-Drying and Porogen Leaching
67(1)
Combinations of Gas Foaming and Particulate Leaching
67(1)
Combinations of Gas Foaming and Particulate Leaching
67(1)
Anisotropic Macroporous Solids through Leaching Processes
68(1)
Polymeric Materials Processed by Leaching Techniques
69(2)
Synthetic Linear Polymers
69(1)
Synthetic Cross-Linked Polymer Networks
70(1)
Natural Polymers
70(1)
Trends in Macroporous Solid Fabrication by Leaching Processes
71(2)
Conclusion
73(1)
Acknowledgments
74(1)
References
74(9)
Production and Properties of Poly (Vinyl Alcohol) Cryogels: Recent Developments
83(34)
Maria C. Gutierrez
Inmaculada Aranaz
Maria L. Ferrer
Francisco del Monle
Introduction
83(2)
Extending the Compositional Nature of PVA Cryogels
85(12)
Cryogels from PVA Solutions Containing Organic Additives
85(1)
Cryogels from PVA-Based Blend Solutions
86(2)
Cryogels from PVA-Based Hybrids and Composites Colloidal Suspensions
88(3)
Cryogels from PVA Solutions Containing Biological Entities (Proteins, Enzymes and Microorganisms)
91(3)
Functionalized PVA Cryogels
94(3)
Morphology Control in Ice-Templating Processes
97(10)
PVA Cryogels Obtained by Unidirectional Freezing and Freeze-Drying
101(2)
Applications in Biotechnology and Drug Delivery
103(4)
Conclusions
107(3)
Acknowledgments
110(1)
References
110(7)
Preparation of Polylactide Scaffolds
117(14)
Ming-Hua Ho
Da-Ming Wang
Hsyue-Jen Hsieh
Juin-Yih Lai
Tissue Engineering and Biodegradable Polymer Scaffolds
117(2)
Introduction to Polylactide
119(1)
The Preparation of PLA Scaffolds
120(6)
Porogen Leaching
121(1)
Textile Technologies
122(1)
Phase Separation Methods
123(3)
High-Pressure Processing
126(1)
Scaffold Fabrication with Computer-Aided Design
126(1)
Conclusions
126(1)
References
127(4)
Macroporous Polysaccharide Gels
131(24)
Fatima M. Plieva
Igor Yu. Galaev
Bo Mattiasson
Introduction
131(3)
Preparation of Macroporous Polysaccharide Gels via Chemical Cross-Linking
134(1)
Preparation of Macroporous Polysaccharide Gels via Freeze-Drying
134(3)
Preparation of Macroporous Polysaccharide Gels via Freeze-Extraction (Solvent-Exchange Phase Separation, SEPS)
137(1)
Macroporous Polysaccharide Gels Prepared via Compression Molding/Solvent Casting---Particle Leaching
137(2)
Preparation of Macroporous Polysaccharides via Double Emulsification Procedure
139(1)
In Silu Forming Gels of Polysaccharides
139(1)
Preparation of Polysaccharide Macroporous Gels via Cryogelation (Polysaccharide Cryogels)
140(10)
Physically Cross-Linked Polysaccharide Cryogels
141(3)
Chemically Cross-Linked Polysaccharide Cryogels
144(1)
Macroporous Polysaccharide Cryogels with Pores up to 200 um in Size
144(1)
Agarose Macroporous Cryogels
145(2)
Alginate Macroporous Cryogels
147(1)
Chitosan Macroporous Cryogels
148(1)
Dextran Macroporous Cryogels
148(2)
Conclusion and Future Perspectives
150(1)
References
150(5)
Superporous Agarose Gels: Production, Properties, and Applications
155(24)
Per-Erik Gustavsson
Peter Tiainen
Per-Olof Larsson
Introduction
155(2)
Preparation of Superporous Gels
157(4)
Superporous Particles
157(1)
Superporous Monoliths
158(2)
Superporous Composite Gels
160(1)
Characterization of Superporous Gels
161(5)
Microscopy Characterization
161(1)
Measuring Pore Flow
162(3)
Chromatographic Characterization Height Equivalent to a Theoretical Plate (HETP)
165(1)
Derivatization of Superporous Gels
166(1)
Applications of Superporous Agarose
166(10)
Superporous Agarose for Protein Separation
168(2)
Superporous Agarose for Plasmid Isolation
170(2)
Enzyme Reactors
172(1)
Superporous Agarose Applications in Bioanalysis and Biosensors
172(3)
Superporous Agarose Employed as Internally Cooled Electrophoresis Gels
175(1)
Concluding Remarks
176(1)
Acknowledgment
176(1)
References
177(2)
Fast-Responsive Macroporous Hydrogels
179(32)
Hossein Omidian
Kinam Park
Introduction
179(2)
Super Water-Absorbent Polymers (SAPs)
181(1)
Responsive Hydrogels
182(2)
Responsive Macroporous Hydrogels
184(1)
Development of Superporous Hydrogels (SPHs)
185(1)
The First Generation SPHs: Conventional SPHs
186(2)
The Second Generation SPHs: SPH Composites
188(1)
The Third Generation SPHs: SPH Hybrids
189(3)
SPH Properties
192(1)
Swelling Property
192(1)
Mechanical Property
192(1)
SPH Stability
193(2)
SPH Scale up
195(1)
SPH Safety and Nontoxicity
195(1)
Hydrogel Characterization
196(1)
Applications
196(4)
Researches on SPH
200(2)
Summary
202(1)
References
202(9)
Section II Characterization of Macroporous Polymers
Characterization of Macroporous Gels
211(26)
Irina N. Savina
Paul E. Tomlins
Sergey V. Mikhalovsky
Igor Yu. Galaev
Introduction
211(3)
Determination of the Porosity by Gravimetric Methods
214(12)
Mercury Porosimetry (MP)
216(1)
Gas Pycnometry
217(1)
Imaging
217(1)
Scanning Electron Microscopy
218(3)
X-Ray Microcomputer Tomography
221(1)
Magnetic Resonance Imaging (MRI)
222(1)
Light Microscopy and Confocal Laser Scanning Microscopy
222(2)
Image Analysis
224(2)
Determination of the Nanoporous Structure of Hydrogels using 1H NMR Spectroscopy and Thermally Stimulated Depolarization (TSD)
226(3)
Gel Permeability
228(1)
Concluding Remarks
229(1)
References
230(7)
Macroporous Polymeric Materials: Synthetic Strategies and Morphological Characterizations
237(30)
Anil K. Bajpai
Sandeep K. Shukla
Introduction
237(1)
Applications of Macroporous Materials
238(2)
Enzyme Immobilization
238(1)
Tissue Engineering
239(1)
Chromatographic Support Materials
239(1)
Controlled Drug Delivery
239(1)
Desired Characteristics of Macroporous Materials
240(2)
Synthesis of Macroporous Polymers
242(8)
Macroporous Polymer Foams Produced by Hydrocarbon Templating
242(1)
Macroporous Polymers Produced by Radiation
243(1)
Surfactant Reverse Micelles Swelling Method
244(1)
Solid Freeform Fabrication (SFF) Technique
244(1)
Advantages
245(2)
Types of SFF Techniques
247(1)
Comparative Limitations of SFF Techniques
248(1)
Thermally Induced Phase Separation Method
248(1)
Freeze-Thaw Method
249(1)
Morphology of Macroporous Polymers
250(8)
Current Challenges and Future Prospects
258(1)
References
259(8)
Section III Application of Macroporous Polymers
Macroporous Gels for Isolation of Small Molecules from the Solutions Containing Suspended Material
267(24)
Bo Mattiasson
Fatima M. Plieva
Igor Yu. Galaev
Introduction
267(14)
Supermacroporous Cryogel Media
268(1)
Cryogels with Decreased Pore Sizes
269(4)
Grafting Polymer Chains to the Pore Surface of Cryogel Monoliths
273(3)
Double-Freezing Approach to Form the Macroporous Systems with Controlled Porosity and Increased Capacity
276(2)
Macroporous Composites Systems
278(3)
Macroporous Cryogels in Protective Shells
281(5)
Concluding Remarks
286(1)
References
286(5)
Monolithic Macroporous Polymers as Chromatographic Matrices
291(44)
Nika Lendero Krajnc
Franc Smrekar
Vida Frankovic
Ales Strancar
Ales Podgornik
Introduction
291(3)
Large Proteins
294(6)
PEGylated Proteins
294(3)
IgMs
297(3)
Oligo and Polynucleotides
300(4)
pDNA
304(7)
Viruses
311(5)
Monolith Characterization
316(9)
Conclusions
325(1)
References
326(9)
Chromatographic Separation of Plasmid DNA Using Macroporous Beads
335(28)
Duarte M. de Franca Prazeres
Introduction
335(2)
Plasmid Biopharmaceuticals
335(2)
Downstream Processing of Plasmids
337(1)
The Starting Material
337(1)
Primary Isolation
337(1)
Intermediate Purification
338(1)
Final Purification
338(1)
Plasmid Structure
338(5)
Basics
338(1)
Plasmid Dimensions
339(2)
Plasmid Diffusion Coefficients
341(2)
Plasmid Chromatography
343(14)
The Challenges
343(1)
Conventional Matrices
344(5)
Macroporous Matrices
349(1)
Superporosity
349(4)
Diffusion and Convection in Superpores
353(2)
Plasmid Purification
355(2)
Discussion
357(1)
Acknowledgment
357(1)
References
358(5)
Cryogels as Matrices for Cell Separation and Cell Cultivation
363(42)
Maria B. Dainiak
Ashok Kumar
Igor Yu. Galaev
Bo Mattiasson
Introduction
363(2)
Affinity Cryogels for Cell Separation
365(11)
Recovery of Bound Cells by Mechanical Compression of a Cryogel
376(4)
Cryogel Scaffolds: Tissue Engineering Applications
380(8)
Cryogels in a High Throughput Screening Format for Cell-Based Assays
388(5)
Extracorporeal Medical Devices
393(1)
Cryogel Bioreactors for Production of Therapeutic Proteins
393(5)
Conclusion
398(1)
References
398(7)
Macroporous Polymeric Scaffolds for Tissue Engineering Applications
405(62)
Ashok Kumar
Era Jain
Akshay Srivastava
Introduction
405(5)
3-D Macroporous Scaffolds for Tissue Engineering
410(18)
Cartilage Tissue Engineering
410(6)
Bone Tissue Engineering
416(7)
Skin Tissue Engineering
423(5)
Skin Substitutes under Development
428(1)
Acellular Approaches
429(1)
Cellular Approaches
430(4)
Neural Tissue Engineering
432(2)
Peripheral Nerve Regeneration
434(4)
Central Nervous System (CNS)
438(3)
Spinal Cord
441(4)
Extracorporeal Artificial Organs (EAO)
444(1)
Bioartificial Liver Devices
445(2)
Conclusion
447(1)
Acknowledgments
448(1)
References
448(19)
Polymeric Scaffolds for Regenerative Medicine
467(30)
Paul A. De Bank
Matthew D. Jones
Marianne J. Ellis
Introduction
468(1)
Biomaterials in Tissue Engineering
468(1)
Polymerization
468(6)
Ring Opening Polymerization (ROP)
468(2)
The Coordination-Insertion Mechansism
470(1)
The Importance and Control of Stereochemistry
471(1)
Selection of the Initiator
472(2)
Scaffold Fabrication
474(1)
The Ideal Scaffold
474(8)
Scaffold Fabrication Techniques
475(1)
Phase Inversion
475(5)
Temperature and Pressure
480(1)
Scaffold Architecture
480(2)
Scaffold Surface Modification
482(4)
Improving Cell Culture on Polymers
482(1)
Adsorption of Serum Proteins
482(1)
Methods of Scaffold Modification
483(1)
Plasma Treatment
483(1)
Ozone
483(1)
Hydrolysis and Aminolysis
484(1)
Electrostatic Self-Assembly
484(1)
Surface Entrapment
485(1)
Adsorption of Bioactive Molecules
486(1)
Covalent Attachment of Bioactive Molecules
486(1)
Bioreactors for Polymeric Scaffolds
486(2)
Conclusions
488(1)
References
489(8)
Index 497
Bo Mattiasson, Ashok Kumar, Igor Yu. Galeaev