Muutke küpsiste eelistusi

E-raamat: Magic Squares: Their History and Construction from Ancient Times to AD 1600

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The science of magic squares witnessed an important development in the Islamic world during the Middle Ages, with a great variety of construction methods being created and ameliorated. The initial step was the translation, in the ninth century, of an anonymous Greek text containing the description of certain highly developed arrangements, no doubt the culmination of ancient research on magic squares.

Arvustused

This is certainly a definitive comprehensive treatise on the history of magic squares from their known beginnings to 1600. There is a wealth of material, containing methods of construction as well as individual magic squares, including bordered and pandiagonal magic squares, that is astonishing. (Victor V. Pambuccian, zbMATH 1422.01002, 2019)

Chapter I Introduction
§ 1 Definitions
1(3)
§ 2 Categories of order
4(2)
§ 3 Banal transformations of ordinary magic squares
6(2)
§ 4 Historical outline
8(5)
§ 5 Main sources considered
13(3)
§ 6 Squares transmitted to the Latin West
16(5)
Chapter II Ordinary magic squares
A Squares of odd orders
21(1)
§ 1 First attempts
21(3)
§ 2 Method of diagonal placing
24(8)
1 Description
24(1)
2 Discovery of this method
25(3)
3 Another way
28(2)
4 A related method
30(1)
5 Modifying the square's aspect
31(1)
§ 3 A method brought from India
32(2)
§ 4 Separation by parity
34(2)
§ 5 Use of the knight's move
36(3)
§ 6 Principles of these methods
39(5)
B Squares of evenly-even orders
44(1)
§ 7 The square of order 4
44(1)
§ 8 Method of dotting
45(2)
§ 9 Exchange of subsquares
47(1)
§ 10 Generalization
48(2)
§ 11 Continuous filling
50(1)
§ 12 Principles of these methods
51(6)
§ 13 Filling according to parity
57(1)
§ 14 An older method
58(2)
§ 15 Crossing the quadrants
60(3)
§ 16 Descent by the knight's move
63(6)
1 Square of order 4
63(2)
2 Squares of higher orders
65(4)
§ 17 Filling pairs of horizontal rows
69(2)
§ 18 Four knight's routes
71(2)
§ 19 Knight's shuttle
73(1)
§ 20 Filling by knight's and bishop's moves
74(3)
§ 21 Filling according to parity
77(2)
§ 22 Filling the subsquares of order 4
79(9)
Particular cases
85(3)
C Squares of evenly-odd orders
88(1)
§ 23 Exchanges in the natural square
88(3)
§ 24 An older method
91(2)
§ 25 Principles of these methods
93(2)
§ 26 Method of the cross
95(7)
§ 27 Construction of a border
102(2)
§ 28 Method of the central square
104(3)
Chapter III Composite magic squares
A Equal subsquares displaying different sums
107(1)
§ 1 Composition using squares of orders larger than 2
107(9)
§ 2 Composition using squares of order 2
116(4)
B Equal subsquares displaying equal sums
120(1)
§ 3 Examples
120(7)
C Division into unequal parts
127(1)
§ 4 Cross in the middle
127(4)
§ 5 Central square
131(10)
Chapter IV Bordered magic squares
§1 Preliminary observations
141(36)
A Squares of odd orders
142(1)
§ 2 Empirical construction
142(4)
§ 3 Grouping the numbers by parity
146(2)
§ 4 Placing together consecutive numbers
148(1)
§ 5 Method of Stifel
149(1)
§ 6 Zigzag placing
150(1)
§ 7 Mathematical basis of these general methods
151(7)
B Squares of evenly-even orders
158(1)
§ 8 Equalization by means of the first numbers
159(1)
§ 9 Alternate placing
160(1)
§ 10 Method of Stifel
161(2)
§ 11 General principles of placing for even orders
163(4)
C Squares of evenly-odd orders
167(1)
§ 12 Equalization by means of the first numbers
167(1)
§ 13 Cyclical placing
168(2)
§ 14 Method of Stifel
170(1)
§ 15 Principles of these methods
171(6)
Chapter V Bordered squares with separation by parity
§ 1 The main square and its parts
177(2)
§ 2 Filling the inner square
179(1)
§ 3 Filling the remainder of the square by trial and error
180(2)
A Methodical filling of the oblique square
182(1)
§ 4 Completing the placing of odd numbers
183(1)
B Methodical placing of the even numbers
184(1)
§ 5 Situation after filling the oblique square
185(3)
1 Determining the number of cells remaining empty
185(1)
2 Determining the sum required
186(2)
§ 6 Rules for placing the even numbers
188(5)
1 First main equalization rule
190(1)
2 Second main equalization rule
191(1)
3 Neutral placings
192(1)
§ 7 Case of the order n = 4t + 1 (with t < 2)
193(8)
1 First border
193(2)
2 Other borders
195(6)
§ 8 Case of the order n = 4t + 3 (with t < I)
201(7)
1 First border
202(1)
2 Other borders
202(6)
C Particular case of the order 5
208(3)
Chapter VI Magic squares with non-consecutive numbers
Particular case: The given numbers form arithmetical progressions
1 The numbers form a single progression
211(1)
2 The numbers form n progressions
212(1)
3 Magic square with a set sum
213(1)
4 Magic products
214(1)
General case: Squares with arbitrary given numbers
A Squares of odd orders
215(1)
§ 1 Square of order 3
215(4)
1 General observations
215(1)
2 The given numbers are in the first row
216(1)
3 The middle number is in the median lower cell
217(1)
4 The given numbers are in the diagonal
218(1)
5 The given numbers are in the middle row
218(1)
§ 2 Square of order 5
219(5)
1 The given numbers are in the first row
219(1)
2 The given numbers are in the second row
220(1)
3 The given numbers are in the diagonal
220(1)
4 The given numbers are in opposite lateral rows
221(1)
5 The given numbers are in the first two rows
222(2)
B Squares of evenly-even orders
224(1)
§ 3 Square of order 4
224(15)
1 General observations
224(2)
2 The given numbers are in the upper row
226(3)
3 The given numbers are in the second row
229(2)
4 The given numbers are in the end cells of the first row and the median of the second
231(1)
5 The given numbers are in the end cells of the first row and the median of the third
232(1)
6 The given numbers are in the diagonal
232(1)
7 The given numbers are in the corner cells
233(1)
8 Writing in the sum as a whole
234(1)
a Cases of impossibility
234(1)
b Filling according to `substance'
235(4)
§ 4 Square of order 8
239(9)
1 The given numbers are in the first row
239(1)
a Particular case: method of division
239(1)
b General case
239(1)
c Filling the second half
240(2)
2 The given numbers are in the first two rows, within the quadrants' diagonals
242(1)
3 The given numbers are in the first and third rows, within the diagonals
243(1)
4 The given numbers are in the first and fourth rows, within the diagonals
244(1)
5 Writing in the global sum
245(3)
C Squares of evenly-odd orders
248(1)
§ 5 Square of order 6
248(3)
1 The given numbers are in the first row
248(1)
2 The given numbers are equally distributed in the lateral rows
249(2)
§ 6 Squares of higher evenly-odd orders
251(2)
Chapter VII Other magic figures
§ 1 Literal squares
253(12)
1 Squares of odd orders
253(1)
a Case of a prime order
253(1)
b Case of the order n -- 9
254(1)
c Case of the order n -- 3 ·e; z, with z ≠ 3
255(1)
d Case of the square order n ≠ z2, with z ≠ 3
256(1)
e Case of the composite order n = t middote;, with t, z odd ≠ 3
257(6)
2 Squares of even orders
263(2)
§ 2 Squares with one empty cell
265(5)
1 Squares of odd orders with central cell empty
265(1)
2 Case ot the square or order 3
266(2)
3 Squares of evenly-even orders
268(2)
§ 3 Squares with divided cells
270(1)
§ 4 Magic triangles
271(2)
§ 5 Magic crosses
273(1)
§ 6 Magic circles
274(3)
1 First type
274(2)
2 Second type
276(1)
§ 7 Magic rectangles
277(3)
1 Both sides are odd
277(1)
2 Both sides are evenly even
278(1)
3 One side evenly even and the other evenly odd
278(1)
4 Both sides are evenly odd
279(1)
§ 8 Magic cubes
280(1)
Appendices 281(22)
Bibliography 303(4)
Index 307