|
|
1 | (44) |
|
|
|
1.1 Why Develop Fusion Reactors? |
|
|
1 | (4) |
|
|
2 | (1) |
|
|
3 | (2) |
|
1.2 How Can We Make Fusion Reactors? |
|
|
5 | (18) |
|
|
6 | (1) |
|
1.2.2 Plasma Heating and Confinement |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.2.4 Magnetic Confinement |
|
|
8 | (4) |
|
1.2.5 Energy Gain Ratio Q |
|
|
12 | (1) |
|
1.2.6 Fusion Power Density |
|
|
13 | (5) |
|
1.2.7 Reactor Power Balance |
|
|
18 | (3) |
|
1.2.8 Effect of Impurities |
|
|
21 | (1) |
|
|
22 | (1) |
|
1.3 What Experiments are Being Conducted? |
|
|
23 | (11) |
|
|
23 | (1) |
|
|
24 | (2) |
|
1.3.3 Reversed Field Pinches (RFP) |
|
|
26 | (2) |
|
|
28 | (3) |
|
1.3.5 Field Reversed Configurations (FRC) |
|
|
31 | (2) |
|
|
33 | (1) |
|
1.3.7 Inertial Confinement Fusion |
|
|
33 | (1) |
|
1.4 What has been Accomplished? |
|
|
34 | (3) |
|
1.5 What are the Future Plans? |
|
|
37 | (4) |
|
1.5.1 International Cooperation |
|
|
37 | (1) |
|
|
37 | (2) |
|
1.5.3 Power Plant Design Studies |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
41 | (4) |
|
|
43 | (2) |
|
|
45 | (26) |
|
|
|
45 | (1) |
|
|
45 | (3) |
|
2.3 Plasma Heating and Current Drive |
|
|
48 | (3) |
|
|
48 | (1) |
|
2.3.2 Charged Particle Injection |
|
|
49 | (1) |
|
2.3.3 Neutral Beam Injection |
|
|
50 | (1) |
|
2.3.4 Electromagnetic Waves |
|
|
50 | (1) |
|
|
51 | (1) |
|
2.4 First Wall, Blanket, and Shield |
|
|
51 | (4) |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
61 | (1) |
|
2.9 Plasma Diagnostics Systems |
|
|
62 | (2) |
|
2.10 Safety and Environment |
|
|
64 | (1) |
|
|
65 | (2) |
|
2.12 Fusion-Fission Hybrids |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (4) |
|
|
68 | (3) |
|
3 Pulsed and Water-Cooled Magnets |
|
|
71 | (48) |
|
|
3.1 Magnetic Field Calculations |
|
|
71 | (9) |
|
|
71 | (1) |
|
3.1.2 Basic Equations for Calculating B |
|
|
72 | (2) |
|
|
74 | (1) |
|
3.1.4 Toruses (or Tori) and Solenoids |
|
|
75 | (1) |
|
|
76 | (4) |
|
3.1.6 Axial Field of Solenoid |
|
|
80 | (1) |
|
3.1.7 Complex Coil Shapes |
|
|
80 | (1) |
|
|
80 | (5) |
|
3.2.1 Long, Parallel Wires |
|
|
81 | (1) |
|
3.2.2 Coaxial Circular Loops |
|
|
81 | (1) |
|
|
82 | (2) |
|
3.2.4 Force-Reduced Torsatron Coils |
|
|
84 | (1) |
|
3.3 RLC Circuit Equations |
|
|
85 | (5) |
|
|
85 | (1) |
|
|
85 | (2) |
|
3.3.3 Resistance and Inductance |
|
|
87 | (3) |
|
3.4 Distribution of J and B |
|
|
90 | (3) |
|
3.4.1 Single-Turn, High-Field Solenoids |
|
|
91 | (2) |
|
|
93 | (4) |
|
3.6 Switching and Transmission |
|
|
97 | (4) |
|
3.7 Magnetic Flux Compression |
|
|
101 | (1) |
|
3.8 Component Reliability |
|
|
102 | (2) |
|
3.9 Power and Cooling Requirements |
|
|
104 | (4) |
|
3.9.1 Relation of Magnetic Field to Coil Power |
|
|
104 | (2) |
|
|
106 | (2) |
|
3.10 Coil Design Considerations |
|
|
108 | (3) |
|
|
110 | (1) |
|
|
111 | (4) |
|
3.11.1 Problems on Pulsed Magnets |
|
|
111 | (2) |
|
3.11.2 Problems on Water-Cooled Magnets |
|
|
113 | (2) |
|
|
115 | (4) |
|
3.12.1 Water-Cooled Magnets |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (2) |
|
4 Superconducting Magnets |
|
|
119 | (56) |
|
|
|
|
119 | (12) |
|
4.1.1 Domain of Superconductivity |
|
|
119 | (1) |
|
|
120 | (2) |
|
4.1.3 Energy Gap and Coherence Length |
|
|
122 | (2) |
|
4.1.4 Diamagnetism and Penetration Depth |
|
|
124 | (2) |
|
|
126 | (2) |
|
4.1.6 Type I and Type II Superconductors |
|
|
128 | (2) |
|
4.1.7 Critical Current Density in Type II Materials |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (3) |
|
|
134 | (3) |
|
4.3.1 Need for Stabilization |
|
|
134 | (1) |
|
4.3.2 Cryogenic Stabilization |
|
|
135 | (1) |
|
4.3.3 Adiabatic Stabilization |
|
|
135 | (2) |
|
4.3.4 Dynamic Stabilization |
|
|
137 | (1) |
|
|
137 | (3) |
|
|
137 | (1) |
|
|
138 | (1) |
|
4.4.3 Short Circuit to Ground |
|
|
138 | (1) |
|
4.4.4 Coolant Channel Blockage |
|
|
138 | (1) |
|
4.4.5 Protection Circuitry |
|
|
138 | (1) |
|
|
139 | (1) |
|
4.4.7 Normal Phase Detection |
|
|
139 | (1) |
|
4.5 Coil Design and Conductor Fabrication |
|
|
140 | (5) |
|
|
140 | (1) |
|
|
141 | (1) |
|
4.5.3 Bath Cooled (or Pool Boiling or Ventilated) Winding |
|
|
142 | (1) |
|
4.5.4 Forced Two-Phase Flow Cooling |
|
|
142 | (1) |
|
4.5.5 Forced Flow Supercritical Cooling |
|
|
142 | (1) |
|
|
143 | (1) |
|
4.5.7 Conductor Fabrication |
|
|
143 | (2) |
|
|
145 | (11) |
|
|
145 | (2) |
|
4.6.2 Toroidal Field System |
|
|
147 | (3) |
|
4.6.3 Poloidal Field System |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (2) |
|
4.7 Large Helical Device Coils |
|
|
156 | (2) |
|
4.8 Wendelstein 7-X Modular Coils |
|
|
158 | (4) |
|
4.8.1 Modular Coil Design |
|
|
158 | (1) |
|
|
159 | (3) |
|
4.8.3 Superconducting Magnetic Energy Storage |
|
|
162 | (1) |
|
4.9 High Temperature Superconductors |
|
|
162 | (4) |
|
4.10 Lessons Learned in Coil Manufacture |
|
|
166 | (4) |
|
|
170 | (1) |
|
|
170 | (2) |
|
|
172 | (3) |
|
|
173 | (2) |
|
5 Plasma Heating and Current Drive |
|
|
175 | (58) |
|
|
|
175 | (1) |
|
5.2 Alpha Particle Heating |
|
|
176 | (3) |
|
|
179 | (1) |
|
5.3.1 Increased Resistivity |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (4) |
|
|
180 | (1) |
|
5.4.2 Adiabatic Compression |
|
|
181 | (3) |
|
5.5 Charged Particle Injection |
|
|
184 | (2) |
|
5.5.1 Charged Particle Beams |
|
|
184 | (1) |
|
|
184 | (2) |
|
5.6 Neutral Beam Injection |
|
|
186 | (9) |
|
5.6.1 Penetration into the Plasma |
|
|
186 | (2) |
|
5.6.2 Neutral Beam Generation |
|
|
188 | (2) |
|
|
190 | (2) |
|
|
192 | (1) |
|
5.6.5 Beam Duct and Pumping |
|
|
192 | (3) |
|
5.7 Wave Heating Fundamentals |
|
|
195 | (6) |
|
5.7.1 Electromagnetic Waves |
|
|
195 | (1) |
|
5.7.2 Stages of Wave Heating |
|
|
196 | (3) |
|
|
199 | (1) |
|
5.7.4 Propagation and Resonances |
|
|
199 | (2) |
|
5.8 Ion Cyclotron Resonance Heating |
|
|
201 | (5) |
|
5.8.1 Propagation and Coupling |
|
|
202 | (1) |
|
5.8.2 ICRF Generators and Transmission Lines |
|
|
203 | (1) |
|
|
203 | (3) |
|
5.9 Electron Cyclotron Heating |
|
|
206 | (5) |
|
|
206 | (2) |
|
5.9.2 Heating and NTM Suppression |
|
|
208 | (2) |
|
|
210 | (1) |
|
5.9.4 Transmission and Launching |
|
|
211 | (1) |
|
|
211 | (3) |
|
5.11 Current Drive and Profile Control |
|
|
214 | (13) |
|
5.11.1 Steady State Operation |
|
|
214 | (1) |
|
|
215 | (1) |
|
5.11.3 Lower Hybrid Current Drive |
|
|
215 | (5) |
|
5.11.4 Electron Cyclotron Current Drive |
|
|
220 | (1) |
|
5.11.5 Neutral Beam Current Drive |
|
|
220 | (2) |
|
5.11.6 ICRF Current Drive |
|
|
222 | (1) |
|
5.11.7 Alpha Particle Channeling |
|
|
222 | (2) |
|
5.11.8 Helicity Injection |
|
|
224 | (3) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (4) |
|
|
230 | (3) |
|
6 First Wall, Blanket, and Shield |
|
|
233 | (80) |
|
|
|
|
|
233 | (2) |
|
6.2 High Heat Flux Components |
|
|
235 | (11) |
|
|
235 | (2) |
|
6.2.2 Materials Selection |
|
|
237 | (1) |
|
6.2.3 Armor Tile Configurations |
|
|
237 | (3) |
|
6.2.4 ITER Blanket and Divertor First Wall |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (4) |
|
6.2.7 Plasma-Surface Interaction Studies |
|
|
245 | (1) |
|
|
246 | (7) |
|
6.3.1 Neutron Multipliers |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (3) |
|
6.3.4 Catalyzed DD Fuel Cycle |
|
|
252 | (1) |
|
|
253 | (3) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
6.4.5 Solid Lithium Oxide |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (3) |
|
|
259 | (2) |
|
|
261 | (4) |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
265 | (2) |
|
6.9 Flow Rate and Pumping Power |
|
|
267 | (3) |
|
|
267 | (1) |
|
6.9.2 Pressure Drop and Pumping Power |
|
|
268 | (2) |
|
6.9.3 Power Flux Limitations |
|
|
270 | (1) |
|
|
270 | (19) |
|
6.10.1 Transport Theory: Boltzmann Transport Equation |
|
|
272 | (1) |
|
6.10.2 Legendre Expansion |
|
|
273 | (1) |
|
6.10.3 Discrete Ordinates Method |
|
|
274 | (3) |
|
6.10.4 The Monte Carlo Method |
|
|
277 | (1) |
|
6.10.5 Location of Next Interaction |
|
|
277 | (2) |
|
6.10.6 Type of Interaction |
|
|
279 | (1) |
|
6.10.7 New Direction and Energy |
|
|
279 | (2) |
|
|
281 | (1) |
|
|
282 | (1) |
|
6.10.10 Number of Case Histories Needed |
|
|
283 | (1) |
|
6.10.11 Variance Reduction Techniques |
|
|
284 | (1) |
|
6.10.12 Neutronics Results |
|
|
285 | (4) |
|
6.11 Blanket Configurations |
|
|
289 | (2) |
|
6.11.1 Coolant Flow Configurations |
|
|
289 | (1) |
|
6.11.2 Flowing Liquid Metal or Molten Salt |
|
|
290 | (1) |
|
6.11.3 Pressure Tube Designs |
|
|
290 | (1) |
|
6.11.4 Pressurized Modules |
|
|
290 | (1) |
|
6.12 Ceramic Breeder Blankets |
|
|
291 | (1) |
|
6.13 Molten Salt Blankets |
|
|
292 | (1) |
|
6.14 Liquid Metal Blankets |
|
|
292 | (3) |
|
6.14.1 Self-Cooled Liquid Metal Blanket |
|
|
293 | (1) |
|
6.14.2 Helium Cooled Lithium Lead |
|
|
293 | (1) |
|
6.14.3 Water Cooled Lithium Lead |
|
|
293 | (1) |
|
6.14.4 Dual-Cooled Lithium Lead |
|
|
294 | (1) |
|
6.15 Corrosion and Tritium Issues |
|
|
295 | (1) |
|
|
295 | (1) |
|
6.15.2 Tritium and Radioactivity Issues |
|
|
296 | (1) |
|
6.16 Energy Conversion Methods |
|
|
296 | (9) |
|
6.16.1 Electrical Power Generation |
|
|
296 | (3) |
|
|
299 | (2) |
|
6.16.3 Other Applications of Fusion Energy |
|
|
301 | (1) |
|
6.16.4 Direct Energy Conversion Principles |
|
|
302 | (1) |
|
6.16.5 Plasma Direct Convertors |
|
|
303 | (1) |
|
6.16.6 Beam Direct Convertors |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (6) |
|
|
308 | (5) |
|
|
313 | (64) |
|
|
7.1 Impurity Causes and Effects |
|
|
313 | (6) |
|
7.1.1 Effects of Impurities |
|
|
313 | (2) |
|
7.1.2 Impurity Concentrations |
|
|
315 | (1) |
|
7.1.3 Helium Accumulation |
|
|
316 | (2) |
|
7.1.4 Equilibrium Helium Concentration |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
319 | (6) |
|
7.2.1 Normal Target Heat Flux |
|
|
319 | (1) |
|
|
320 | (1) |
|
7.2.3 Vertical Displacement Events |
|
|
321 | (1) |
|
|
321 | (1) |
|
7.2.5 Edge Localized Modes |
|
|
322 | (2) |
|
|
324 | (1) |
|
|
325 | (5) |
|
7.3.1 Hydrogen and Helium |
|
|
326 | (1) |
|
|
326 | (1) |
|
7.3.3 Graphite and Beryllium |
|
|
327 | (1) |
|
7.3.4 Tungsten and Molybdenum |
|
|
327 | (1) |
|
|
328 | (1) |
|
7.3.6 Theory and Modeling |
|
|
329 | (1) |
|
|
330 | (9) |
|
|
330 | (1) |
|
7.4.2 Supersonic Molecular Beam Injection |
|
|
331 | (1) |
|
|
331 | (2) |
|
7.4.4 Plasma Guns and Compact Toroid Injection |
|
|
333 | (1) |
|
7.4.5 Neutral Beam Injection |
|
|
333 | (1) |
|
|
334 | (2) |
|
7.4.7 ITER Fueling System |
|
|
336 | (2) |
|
|
338 | (1) |
|
|
339 | (7) |
|
|
339 | (1) |
|
|
340 | (4) |
|
|
344 | (1) |
|
7.5.4 Divertor Target and Pumping |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (12) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
348 | (1) |
|
7.6.4 Developmental Divertors |
|
|
348 | (1) |
|
7.6.5 Plate Type Divertor |
|
|
349 | (1) |
|
7.6.6 Open-Cell Foam in Tube |
|
|
350 | (1) |
|
|
351 | (1) |
|
7.6.8 Finger Tube Divertors |
|
|
352 | (1) |
|
7.6.9 Stellarator Divertors |
|
|
353 | (3) |
|
7.6.10 Super-X and Snowflake Divertors |
|
|
356 | (1) |
|
7.6.11 Divertor Conclusions |
|
|
357 | (1) |
|
7.7 Other Impurity Control Concepts |
|
|
358 | (4) |
|
|
358 | (2) |
|
7.7.2 Neutral Gas Blankets |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
362 | (1) |
|
7.7.5 Neutral Beam Injection |
|
|
362 | (1) |
|
7.8 Computer Control and Remote Operations |
|
|
362 | (2) |
|
7.9 Lithium Wall Concepts |
|
|
364 | (6) |
|
7.9.1 Swirling Liquid Walls |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
365 | (1) |
|
7.9.5 Lithium Replenishment |
|
|
366 | (1) |
|
7.9.6 Experimental Results |
|
|
367 | (2) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (6) |
|
|
372 | (5) |
|
|
377 | (74) |
|
|
|
377 | (7) |
|
|
378 | (2) |
|
8.1.2 Damage Microstructure Evolution |
|
|
380 | (4) |
|
|
384 | (5) |
|
8.2.1 Structural Life Predictions |
|
|
384 | (1) |
|
|
385 | (3) |
|
8.2.3 Irradiation Testing |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (6) |
|
|
389 | (2) |
|
|
391 | (1) |
|
|
392 | (2) |
|
|
394 | (1) |
|
|
395 | (7) |
|
|
395 | (1) |
|
8.4.2 Radiation Hardening |
|
|
395 | (1) |
|
|
396 | (2) |
|
8.4.4 Plastic Instability |
|
|
398 | (1) |
|
8.4.5 Helium Embrittlement |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (4) |
|
|
403 | (1) |
|
8.5.2 Spontaneous Desorption |
|
|
404 | (1) |
|
8.5.3 Stimulated Desorption |
|
|
405 | (1) |
|
8.6 Impurity Introduction |
|
|
406 | (14) |
|
8.6.1 Physical Sputtering |
|
|
406 | (6) |
|
8.6.2 Physichemical Sputtering |
|
|
412 | (1) |
|
|
412 | (1) |
|
8.6.4 Impurity Desorption |
|
|
413 | (1) |
|
|
413 | (3) |
|
8.6.6 Blistering and Flaking |
|
|
416 | (2) |
|
|
418 | (2) |
|
8.6.8 Synergistic Effects |
|
|
420 | (1) |
|
|
420 | (2) |
|
|
421 | (1) |
|
8.7.2 Alloy Composition Changes |
|
|
421 | (1) |
|
8.7.3 Microstructural Changes |
|
|
421 | (1) |
|
8.7.4 Macrostructural Changes |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
422 | (14) |
|
|
422 | (1) |
|
|
423 | (2) |
|
|
425 | (1) |
|
|
426 | (2) |
|
|
428 | (1) |
|
|
429 | (1) |
|
|
429 | (1) |
|
|
430 | (2) |
|
|
432 | (1) |
|
8.8.10 Superconducting Magnets and Cryostats |
|
|
432 | (2) |
|
|
434 | (2) |
|
8.9 Dust in Fusion Devices |
|
|
436 | (2) |
|
8.9.1 Dust Measurement on Surfaces |
|
|
436 | (1) |
|
8.9.2 Dust Measurement in Plasma |
|
|
437 | (1) |
|
8.9.3 Dust Effects and Removal |
|
|
437 | (1) |
|
8.10 Irradiation Facilities |
|
|
438 | (6) |
|
8.10.1 Need for Fusion Neutron Source |
|
|
438 | (1) |
|
|
439 | (5) |
|
8.11 Materials Selection Considerations |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
446 | (5) |
|
|
447 | (4) |
|
|
451 | (40) |
|
|
|
|
451 | (2) |
|
9.1.1 Historical Development |
|
|
451 | (2) |
|
9.1.2 Need for Ultra-High Vacuum |
|
|
453 | (1) |
|
9.2 Viscous Flow and Molecular Flow |
|
|
453 | (9) |
|
|
454 | (2) |
|
|
456 | (1) |
|
|
457 | (3) |
|
|
460 | (2) |
|
|
462 | (9) |
|
|
462 | (3) |
|
|
465 | (3) |
|
|
468 | (1) |
|
|
468 | (2) |
|
|
470 | (1) |
|
|
471 | (5) |
|
9.5 Vacuum Chambers and Components |
|
|
476 | (3) |
|
|
479 | (4) |
|
|
479 | (1) |
|
9.6.2 Vacuum Chamber Cleaning |
|
|
480 | (2) |
|
|
482 | (1) |
|
|
483 | (3) |
|
|
486 | (1) |
|
|
486 | (2) |
|
|
488 | (3) |
|
|
488 | (3) |
|
|
491 | (22) |
|
|
|
491 | (2) |
|
10.2 Properties of Materials at Low Temperatures |
|
|
493 | (7) |
|
10.2.1 Mechanical Properties |
|
|
493 | (1) |
|
10.2.2 Thermal Properties |
|
|
494 | (4) |
|
10.2.3 Electrical Resistivity |
|
|
498 | (1) |
|
|
498 | (2) |
|
10.3 Refrigeration and Liquefaction |
|
|
500 | (3) |
|
|
503 | (3) |
|
|
506 | (1) |
|
10.6 ITER Cryogenic System |
|
|
507 | (2) |
|
|
509 | (1) |
|
|
510 | (3) |
|
|
511 | (2) |
|
|
513 | (106) |
|
|
|
|
|
513 | (3) |
|
|
516 | (6) |
|
11.2.1 Single Langmuir Probe |
|
|
516 | (2) |
|
|
518 | (1) |
|
11.2.3 Effect of Magnetic Field |
|
|
519 | (1) |
|
11.2.4 Other Designs of Electrostatic Probes |
|
|
519 | (3) |
|
11.3 Magnetic Flux Measurements |
|
|
522 | (3) |
|
|
522 | (2) |
|
|
524 | (1) |
|
11.4 Ions and Neutral Atoms |
|
|
525 | (6) |
|
11.4.1 Electrons and Ions |
|
|
525 | (1) |
|
11.4.2 Charge-Exchange Neutral Atoms |
|
|
526 | (3) |
|
|
529 | (1) |
|
11.4.4 Particle Deposition Diagnostics |
|
|
530 | (1) |
|
11.5 Neutron Measurements |
|
|
531 | (9) |
|
11.5.1 Gas-Filled Proportional Counters and Fission Chambers |
|
|
532 | (2) |
|
11.5.2 Scintillation Detectors |
|
|
534 | (1) |
|
|
535 | (1) |
|
11.5.4 Neutron Spectroscopy |
|
|
535 | (1) |
|
11.5.5 Time-of-Flight Spectrometry |
|
|
536 | (1) |
|
|
536 | (3) |
|
11.5.7 Neutron Emission Imaging |
|
|
539 | (1) |
|
11.6 Passive Wave Diagnostics |
|
|
540 | (30) |
|
11.6.1 Ionization States and Atomic Energy Levels |
|
|
540 | (2) |
|
11.6.2 Radiation Power Density |
|
|
542 | (3) |
|
|
545 | (1) |
|
11.6.4 Spectral Line Shapes |
|
|
546 | (4) |
|
11.6.5 Spectral Line Intensities |
|
|
550 | (1) |
|
11.6.6 Visible Spectroscopy |
|
|
550 | (1) |
|
|
551 | (2) |
|
|
553 | (1) |
|
11.6.9 Ultraviolet Measurements |
|
|
554 | (4) |
|
11.6.10 Soft X-ray Measurements |
|
|
558 | (1) |
|
11.6.11 Pulse Height Analysis Systems |
|
|
558 | (2) |
|
11.6.12 X-ray Crystal Spectroscopy |
|
|
560 | (1) |
|
11.6.13 Soft X-ray Tomography |
|
|
561 | (3) |
|
11.6.14 Hard X-ray Measurements |
|
|
564 | (1) |
|
11.6.15 Electron Cyclotron Emission |
|
|
565 | (5) |
|
11.7 Active Particle Diagnostics |
|
|
570 | (12) |
|
11.7.1 Beam Emission Spectroscopy |
|
|
570 | (3) |
|
11.7.2 Charge Exchange Recombination Spectroscopy |
|
|
573 | (3) |
|
11.7.3 Lithium Beam Spectroscopy |
|
|
576 | (1) |
|
11.7.4 Motional Stark Effect |
|
|
577 | (2) |
|
11.7.5 Rutherford Scattering |
|
|
579 | (1) |
|
11.7.6 Heavy Ion Beam Probes |
|
|
579 | (2) |
|
11.7.7 Impurity Injection |
|
|
581 | (1) |
|
11.8 Active Wave Diagnostics |
|
|
582 | (15) |
|
|
582 | (1) |
|
11.8.2 Wave Propagation Equations |
|
|
583 | (2) |
|
|
585 | (1) |
|
|
586 | (2) |
|
|
588 | (4) |
|
11.8.6 Thomson Scattering |
|
|
592 | (4) |
|
11.8.7 Laser Induced Fluorescence |
|
|
596 | (1) |
|
|
597 | (12) |
|
11.9.1 Burning Plasma Issues |
|
|
605 | (4) |
|
|
609 | (1) |
|
|
609 | (1) |
|
|
610 | (3) |
|
|
613 | (6) |
|
|
614 | (5) |
|
12 Safety and Environment |
|
|
619 | (34) |
|
|
|
|
619 | (1) |
|
|
619 | (15) |
|
|
621 | (1) |
|
|
622 | (1) |
|
12.2.3 Tritium Production Rate |
|
|
622 | (2) |
|
|
624 | (1) |
|
12.2.5 Tritium Permeation Rates |
|
|
625 | (3) |
|
12.2.6 Tritium Recovery Systems |
|
|
628 | (4) |
|
12.2.7 Accidental Tritium Release |
|
|
632 | (1) |
|
12.2.8 Tritium Supply and Cost |
|
|
632 | (2) |
|
|
634 | (4) |
|
|
634 | (2) |
|
12.3.2 Radioactive Materials |
|
|
636 | (1) |
|
12.3.3 Disposition of Radioactive Materials |
|
|
637 | (1) |
|
12.4 Hazards and Materials Shortages |
|
|
638 | (3) |
|
|
638 | (1) |
|
12.4.2 Materials Shortages |
|
|
638 | (3) |
|
12.4.3 Summary of Environmental Effects |
|
|
641 | (1) |
|
|
641 | (8) |
|
|
642 | (1) |
|
|
643 | (1) |
|
12.5.3 Failure Mode and Effect Analysis |
|
|
644 | (1) |
|
12.5.4 Occupational Radiation Exposure (ORE) |
|
|
645 | (1) |
|
12.5.5 Aries-At Safety Analysis |
|
|
646 | (2) |
|
12.5.6 US Safety Standard |
|
|
648 | (1) |
|
|
649 | (1) |
|
|
649 | (1) |
|
|
649 | (1) |
|
|
650 | (3) |
|
|
651 | (2) |
|
|
653 | (46) |
|
|
|
|
13.1 Introduction: Attractive Power Plants |
|
|
653 | (4) |
|
|
654 | (1) |
|
13.1.2 Regulatory Simplicity |
|
|
655 | (1) |
|
|
656 | (1) |
|
13.2 Reliability, Availability, and Maintainability |
|
|
657 | (11) |
|
|
657 | (2) |
|
|
659 | (3) |
|
|
662 | (5) |
|
|
667 | (1) |
|
|
668 | (4) |
|
13.3.1 Competitiveness of Fusion Energy |
|
|
672 | (1) |
|
|
672 | (4) |
|
13.4.1 Economy of Scale Issues |
|
|
672 | (2) |
|
13.4.2 Reasons for Economy of Scale |
|
|
674 | (2) |
|
13.5 European Power Plant Designs |
|
|
676 | (3) |
|
13.6 Japanese Power Plant Designs |
|
|
679 | (2) |
|
|
679 | (2) |
|
|
681 | (1) |
|
13.7 Chinese Power Plant Designs |
|
|
681 | (6) |
|
13.7.1 Power Plant for Electricity Generation |
|
|
682 | (1) |
|
13.7.2 Hydrogen Production Plant |
|
|
683 | (1) |
|
13.7.3 Fusion-Fission Hybrid Power Plants |
|
|
684 | (1) |
|
13.7.4 Tritium Breeding Module (TBM) for ITER and Demo |
|
|
685 | (1) |
|
13.7.5 Materials Research |
|
|
686 | (1) |
|
13.8 United States Power Plant Designs |
|
|
687 | (4) |
|
|
687 | (1) |
|
|
687 | (4) |
|
|
691 | (1) |
|
|
691 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
693 | (1) |
|
|
693 | (6) |
|
|
694 | (5) |
|
14 Fusion-Fission Hybrid Reactors |
|
|
699 | (44) |
|
|
|
14.1 Introduction: Why Fusion-Fission Hybrids? |
|
|
699 | (6) |
|
14.1.1 Advantages Over Fission Breeder Reactors |
|
|
702 | (3) |
|
|
705 | (5) |
|
|
705 | (2) |
|
14.2.2 Other Magnetic Confinement Devices |
|
|
707 | (1) |
|
|
707 | (3) |
|
14.3 Blankets and Neutronics |
|
|
710 | (10) |
|
|
710 | (5) |
|
14.3.2 Infinite Homogeneous Medium |
|
|
715 | (2) |
|
14.3.3 Two-Zone Heterogeneous Blanket |
|
|
717 | (3) |
|
14.4 Blanket Designs for Fuel production |
|
|
720 | (6) |
|
14.4.1 Molten-Salt Blanket Designs-Fission-Suppressed Fusion Breeder |
|
|
720 | (1) |
|
14.4.2 Fission-Suppressed Blanket Based on Liquid Lithium Multiplier |
|
|
721 | (3) |
|
14.4.3 Gas-Cooled Designs: Fast-Fission Fuel Producers |
|
|
724 | (1) |
|
14.4.4 Liquid-Metal Blanket Designs |
|
|
724 | (2) |
|
14.5 Blanket Designs for Waste Incineration |
|
|
726 | (5) |
|
14.5.1 Hard Spectrum Sodium-Cooled, Minor-Actinide Burner (University of Texas) |
|
|
727 | (2) |
|
14.5.2 Hard Spectrum, Sodium Cooled, All Transuranics Burner (Georgia Tech University) |
|
|
729 | (1) |
|
14.5.3 Molten Salt Waste Burner, All Transuranics |
|
|
730 | (1) |
|
14.5.4 Pu Waste Burning Molten Salt Inertial Fusion Reactor |
|
|
731 | (1) |
|
14.6 Blanket Designs for High Power Production |
|
|
731 | (1) |
|
|
732 | (1) |
|
|
733 | (2) |
|
14.8.1 Proliferation Resistance from 232U |
|
|
734 | (1) |
|
|
735 | (3) |
|
|
738 | (1) |
|
|
738 | (5) |
|
|
739 | (4) |
Appendix A Units |
|
743 | (6) |
Appendix B Constants |
|
749 | (2) |
Appendix C Error Function |
|
751 | (2) |
Appendix D Vector Relations |
|
753 | (4) |
Appendix E Abbreviations |
|
757 | (6) |
Appendix F Symbols Used in Equations |
|
763 | (14) |
Appendix G Answers to Problems |
|
777 | (14) |
Index |
|
791 | |