Muutke küpsiste eelistusi

E-raamat: Magnetic Fusion Technology

Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Energy 19
  • Ilmumisaeg: 10-Feb-2014
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447155560
  • Formaat - PDF+DRM
  • Hind: 246,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Energy 19
  • Ilmumisaeg: 10-Feb-2014
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447155560

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Revised throughout in response to advances in the field since its first edition, this text describes the technologies needed to generate power in nuclear fusion plants using strong magnetic fields, from the magnets themselves to cryogenic and safety systems.



Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.
1 Introduction
1(44)
Thomas J. Dolan
Alexander Parrish
1.1 Why Develop Fusion Reactors?
1(4)
1.1.1 Energy Demand
2(1)
1.1.2 Energy Supply
3(2)
1.2 How Can We Make Fusion Reactors?
5(18)
1.2.1 Nuclear Energy
6(1)
1.2.2 Plasma Heating and Confinement
7(1)
1.2.3 Fusion Reactions
8(1)
1.2.4 Magnetic Confinement
8(4)
1.2.5 Energy Gain Ratio Q
12(1)
1.2.6 Fusion Power Density
13(5)
1.2.7 Reactor Power Balance
18(3)
1.2.8 Effect of Impurities
21(1)
1.2.9 Ignition
22(1)
1.3 What Experiments are Being Conducted?
23(11)
1.3.1 Tokamaks
23(1)
1.3.2 Stellarators
24(2)
1.3.3 Reversed Field Pinches (RFP)
26(2)
1.3.4 Spheromaks
28(3)
1.3.5 Field Reversed Configurations (FRC)
31(2)
1.3.6 Magnetic Mirrors
33(1)
1.3.7 Inertial Confinement Fusion
33(1)
1.4 What has been Accomplished?
34(3)
1.5 What are the Future Plans?
37(4)
1.5.1 International Cooperation
37(1)
1.5.2 ITER
37(2)
1.5.3 Power Plant Design Studies
39(2)
1.6 Problems
41(1)
1.7 Review Questions
41(4)
References
43(2)
2 Technology Issues
45(26)
Thomas J. Dolan
2.1 The Issues
45(1)
2.2 Magnets
45(3)
2.3 Plasma Heating and Current Drive
48(3)
2.3.1 Ohmic Heating
48(1)
2.3.2 Charged Particle Injection
49(1)
2.3.3 Neutral Beam Injection
50(1)
2.3.4 Electromagnetic Waves
50(1)
2.3.5 Plasma Guns
51(1)
2.4 First Wall, Blanket, and Shield
51(4)
2.5 Control Systems
55(3)
2.6 Materials Issues
58(1)
2.7 Vacuum Systems
59(2)
2.8 Cryogenic Systems
61(1)
2.9 Plasma Diagnostics Systems
62(2)
2.10 Safety and Environment
64(1)
2.11 Power Plant Designs
65(2)
2.12 Fusion-Fission Hybrids
67(1)
2.13 Problems
67(1)
2.14 Review Questions
67(4)
References
68(3)
3 Pulsed and Water-Cooled Magnets
71(48)
Thomas J. Dolan
3.1 Magnetic Field Calculations
71(9)
3.1.1 Background
71(1)
3.1.2 Basic Equations for Calculating B
72(2)
3.1.3 Long Straight Wire
74(1)
3.1.4 Toruses (or Tori) and Solenoids
75(1)
3.1.5 Circular Loops
76(4)
3.1.6 Axial Field of Solenoid
80(1)
3.1.7 Complex Coil Shapes
80(1)
3.2 Coil Forces
80(5)
3.2.1 Long, Parallel Wires
81(1)
3.2.2 Coaxial Circular Loops
81(1)
3.2.3 Solenoids
82(2)
3.2.4 Force-Reduced Torsatron Coils
84(1)
3.3 RLC Circuit Equations
85(5)
3.3.1 Background
85(1)
3.3.2 Circuit Equations
85(2)
3.3.3 Resistance and Inductance
87(3)
3.4 Distribution of J and B
90(3)
3.4.1 Single-Turn, High-Field Solenoids
91(2)
3.5 Energy Storage
93(4)
3.6 Switching and Transmission
97(4)
3.7 Magnetic Flux Compression
101(1)
3.8 Component Reliability
102(2)
3.9 Power and Cooling Requirements
104(4)
3.9.1 Relation of Magnetic Field to Coil Power
104(2)
3.9.2 Cooling Water
106(2)
3.10 Coil Design Considerations
108(3)
3.10.1 Windings
110(1)
3.11 Problems
111(4)
3.11.1 Problems on Pulsed Magnets
111(2)
3.11.2 Problems on Water-Cooled Magnets
113(2)
3.12 Review Questions
115(4)
3.12.1 Water-Cooled Magnets
115(1)
3.12.2 Pulsed Magnets
116(1)
References
117(2)
4 Superconducting Magnets
119(56)
Thomas J. Dolan
Denis P. Ivanov
4.1 Superconductivity
119(12)
4.1.1 Domain of Superconductivity
119(1)
4.1.2 Electron Pairing
120(2)
4.1.3 Energy Gap and Coherence Length
122(2)
4.1.4 Diamagnetism and Penetration Depth
124(2)
4.1.5 Flux Quantization
126(2)
4.1.6 Type I and Type II Superconductors
128(2)
4.1.7 Critical Current Density in Type II Materials
130(1)
4.1.8 Magnet Coils
130(1)
4.2 Superconductors
131(3)
4.3 Stabilization
134(3)
4.3.1 Need for Stabilization
134(1)
4.3.2 Cryogenic Stabilization
135(1)
4.3.3 Adiabatic Stabilization
135(2)
4.3.4 Dynamic Stabilization
137(1)
4.4 Coil Protection
137(3)
4.4.1 Quench
137(1)
4.4.2 Broken Circuit
138(1)
4.4.3 Short Circuit to Ground
138(1)
4.4.4 Coolant Channel Blockage
138(1)
4.4.5 Protection Circuitry
138(1)
4.4.6 Fault Detection
139(1)
4.4.7 Normal Phase Detection
139(1)
4.5 Coil Design and Conductor Fabrication
140(5)
4.5.1 Conductor Design
140(1)
4.5.2 Heat Removal
141(1)
4.5.3 Bath Cooled (or Pool Boiling or Ventilated) Winding
142(1)
4.5.4 Forced Two-Phase Flow Cooling
142(1)
4.5.5 Forced Flow Supercritical Cooling
142(1)
4.5.6 Structural Design
143(1)
4.5.7 Conductor Fabrication
143(2)
4.6 ITER Coils
145(11)
4.6.1 Coil Set
145(2)
4.6.2 Toroidal Field System
147(3)
4.6.3 Poloidal Field System
150(1)
4.6.4 Central Solenoid
151(1)
4.6.5 Correction Coils
152(2)
4.6.6 HTS Current Leads
154(2)
4.7 Large Helical Device Coils
156(2)
4.8 Wendelstein 7-X Modular Coils
158(4)
4.8.1 Modular Coil Design
158(1)
4.8.2 Assembly
159(3)
4.8.3 Superconducting Magnetic Energy Storage
162(1)
4.9 High Temperature Superconductors
162(4)
4.10 Lessons Learned in Coil Manufacture
166(4)
4.11 Summary
170(1)
4.12 Problems
170(2)
4.13 Review Questions
172(3)
References
173(2)
5 Plasma Heating and Current Drive
175(58)
Thomas J. Dolan
5.1 Introduction
175(1)
5.2 Alpha Particle Heating
176(3)
5.3 Ohmic Heating
179(1)
5.3.1 Increased Resistivity
179(1)
5.3.2 Electron Runaway
180(1)
5.4 Compression
180(4)
5.4.1 Shock Heating
180(1)
5.4.2 Adiabatic Compression
181(3)
5.5 Charged Particle Injection
184(2)
5.5.1 Charged Particle Beams
184(1)
5.5.2 Plasma Guns
184(2)
5.6 Neutral Beam Injection
186(9)
5.6.1 Penetration into the Plasma
186(2)
5.6.2 Neutral Beam Generation
188(2)
5.6.3 Ion Sources
190(2)
5.6.4 Accelerator
192(1)
5.6.5 Beam Duct and Pumping
192(3)
5.7 Wave Heating Fundamentals
195(6)
5.7.1 Electromagnetic Waves
195(1)
5.7.2 Stages of Wave Heating
196(3)
5.7.3 Cavity Resonances
199(1)
5.7.4 Propagation and Resonances
199(2)
5.8 Ion Cyclotron Resonance Heating
201(5)
5.8.1 Propagation and Coupling
202(1)
5.8.2 ICRF Generators and Transmission Lines
203(1)
5.8.3 Antennas
203(3)
5.9 Electron Cyclotron Heating
206(5)
5.9.1 Wave Propagation
206(2)
5.9.2 Heating and NTM Suppression
208(2)
5.9.3 Wave Generation
210(1)
5.9.4 Transmission and Launching
211(1)
5.10 Lower Hybrid Waves
211(3)
5.11 Current Drive and Profile Control
214(13)
5.11.1 Steady State Operation
214(1)
5.11.2 Bootstrap Current
215(1)
5.11.3 Lower Hybrid Current Drive
215(5)
5.11.4 Electron Cyclotron Current Drive
220(1)
5.11.5 Neutral Beam Current Drive
220(2)
5.11.6 ICRF Current Drive
222(1)
5.11.7 Alpha Particle Channeling
222(2)
5.11.8 Helicity Injection
224(3)
5.12 Summary
227(1)
5.13 Problems
228(1)
5.14 Review Questions
229(4)
References
230(3)
6 First Wall, Blanket, and Shield
233(80)
Thomas J. Dolan
Lester M. Waganer
Mario Merola
6.1 Introduction
233(2)
6.2 High Heat Flux Components
235(11)
6.2.1 Heat Fluxes
235(2)
6.2.2 Materials Selection
237(1)
6.2.3 Armor Tile Configurations
237(3)
6.2.4 ITER Blanket and Divertor First Wall
240(1)
6.2.5 HHFC Research
241(1)
6.2.6 HHFC Testing
241(4)
6.2.7 Plasma-Surface Interaction Studies
245(1)
6.3 Breeding Materials
246(7)
6.3.1 Neutron Multipliers
247(1)
6.3.2 Lithium and PbLi
248(1)
6.3.3 Molten Salts
249(3)
6.3.4 Catalyzed DD Fuel Cycle
252(1)
6.4 Coolants
253(3)
6.4.1 Water
253(1)
6.4.2 Liquid Metals
253(1)
6.4.3 Helium
254(1)
6.4.4 Molten Salts
254(1)
6.4.5 Solid Lithium Oxide
255(1)
6.4.6 Comparison
255(1)
6.5 Structural Materials
256(3)
6.6 Shielding Materials
259(2)
6.7 Heat Transfer
261(4)
6.7.1 Radiation
261(1)
6.7.2 Heat Conduction
262(2)
6.7.3 Heat Convection
264(1)
6.8 Stresses
265(2)
6.9 Flow Rate and Pumping Power
267(3)
6.9.1 Flow Rates
267(1)
6.9.2 Pressure Drop and Pumping Power
268(2)
6.9.3 Power Flux Limitations
270(1)
6.10 Neutronics
270(19)
6.10.1 Transport Theory: Boltzmann Transport Equation
272(1)
6.10.2 Legendre Expansion
273(1)
6.10.3 Discrete Ordinates Method
274(3)
6.10.4 The Monte Carlo Method
277(1)
6.10.5 Location of Next Interaction
277(2)
6.10.6 Type of Interaction
279(1)
6.10.7 New Direction and Energy
279(2)
6.10.8 Tallying
281(1)
6.10.9 Error Estimates
282(1)
6.10.10 Number of Case Histories Needed
283(1)
6.10.11 Variance Reduction Techniques
284(1)
6.10.12 Neutronics Results
285(4)
6.11 Blanket Configurations
289(2)
6.11.1 Coolant Flow Configurations
289(1)
6.11.2 Flowing Liquid Metal or Molten Salt
290(1)
6.11.3 Pressure Tube Designs
290(1)
6.11.4 Pressurized Modules
290(1)
6.12 Ceramic Breeder Blankets
291(1)
6.13 Molten Salt Blankets
292(1)
6.14 Liquid Metal Blankets
292(3)
6.14.1 Self-Cooled Liquid Metal Blanket
293(1)
6.14.2 Helium Cooled Lithium Lead
293(1)
6.14.3 Water Cooled Lithium Lead
293(1)
6.14.4 Dual-Cooled Lithium Lead
294(1)
6.15 Corrosion and Tritium Issues
295(1)
6.15.1 Corrosion
295(1)
6.15.2 Tritium and Radioactivity Issues
296(1)
6.16 Energy Conversion Methods
296(9)
6.16.1 Electrical Power Generation
296(3)
6.16.2 Fuel Production
299(2)
6.16.3 Other Applications of Fusion Energy
301(1)
6.16.4 Direct Energy Conversion Principles
302(1)
6.16.5 Plasma Direct Convertors
303(1)
6.16.6 Beam Direct Convertors
304(1)
6.17 Problems
305(2)
6.17.1 Blankets
305(1)
6.17.2 Neutronics
306(1)
6.18 Review Questions
307(6)
References
308(5)
7 Control Systems
313(64)
Thomas J. Dolan
7.1 Impurity Causes and Effects
313(6)
7.1.1 Effects of Impurities
313(2)
7.1.2 Impurity Concentrations
315(1)
7.1.3 Helium Accumulation
316(2)
7.1.4 Equilibrium Helium Concentration
318(1)
7.1.5 Modes of Operation
318(1)
7.2 Plasma Power Flow
319(6)
7.2.1 Normal Target Heat Flux
319(1)
7.2.2 Radiation
320(1)
7.2.3 Vertical Displacement Events
321(1)
7.2.4 Disruptions
321(1)
7.2.5 Edge Localized Modes
322(2)
7.2.6 Erosion
324(1)
7.3 Particle Control
325(5)
7.3.1 Hydrogen and Helium
326(1)
7.3.2 Redeposition
326(1)
7.3.3 Graphite and Beryllium
327(1)
7.3.4 Tungsten and Molybdenum
327(1)
7.3.5 Tritium Retention
328(1)
7.3.6 Theory and Modeling
329(1)
7.4 Fueling
330(9)
7.4.1 Gas injection
330(1)
7.4.2 Supersonic Molecular Beam Injection
331(1)
7.4.3 Cluster Injection
331(2)
7.4.4 Plasma Guns and Compact Toroid Injection
333(1)
7.4.5 Neutral Beam Injection
333(1)
7.4.6 Pellet Injection
334(2)
7.4.7 ITER Fueling System
336(2)
7.4.8 Summary of Fueling
338(1)
7.5 Divertor Functions
339(7)
7.5.1 Types of Divertors
339(1)
7.5.2 Plasma Flow
340(4)
7.5.3 Plasma Sheath
344(1)
7.5.4 Divertor Target and Pumping
345(1)
7.5.5 Closed Divertors
345(1)
7.6 Divertor Examples
346(12)
7.6.1 Power Load
346(1)
7.6.2 Thermal Stress
347(1)
7.6.3 Divertor Cooling
348(1)
7.6.4 Developmental Divertors
348(1)
7.6.5 Plate Type Divertor
349(1)
7.6.6 Open-Cell Foam in Tube
350(1)
7.6.7 T-Tube divertor
351(1)
7.6.8 Finger Tube Divertors
352(1)
7.6.9 Stellarator Divertors
353(3)
7.6.10 Super-X and Snowflake Divertors
356(1)
7.6.11 Divertor Conclusions
357(1)
7.7 Other Impurity Control Concepts
358(4)
7.7.1 Pumped Limiters
358(2)
7.7.2 Neutral Gas Blankets
360(2)
7.7.3 Impurity Injection
362(1)
7.7.4 Gas Flow
362(1)
7.7.5 Neutral Beam Injection
362(1)
7.8 Computer Control and Remote Operations
362(2)
7.9 Lithium Wall Concepts
364(6)
7.9.1 Swirling Liquid Walls
364(1)
7.9.2 Recycling Effects
364(1)
7.9.3 Fueling
365(1)
7.9.4 Confinement
365(1)
7.9.5 Lithium Replenishment
366(1)
7.9.6 Experimental Results
367(2)
7.9.7 Heat Transfer
369(1)
7.10 Problems
370(1)
7.11 Review Questions
371(6)
References
372(5)
8 Materials Issues
377(74)
Thomas J. Dolan
8.1 Introduction
377(7)
8.1.1 Damage Production
378(2)
8.1.2 Damage Microstructure Evolution
380(4)
8.2 Analysis
384(5)
8.2.1 Structural Life Predictions
384(1)
8.2.2 Thermal Stress
385(3)
8.2.3 Irradiation Testing
388(1)
8.2.4 Compatibility
388(1)
8.2.5 Fabrication
389(1)
8.3 Mechanical Behavior
389(6)
8.3.1 Strength
389(2)
8.3.2 Ductility
391(1)
8.3.3 Fatigue
392(2)
8.3.4 Thermal Creep
394(1)
8.4 Irradiation Effects
395(7)
8.4.1 Embrittlement
395(1)
8.4.2 Radiation Hardening
395(1)
8.4.3 DBTT Shift
396(2)
8.4.4 Plastic Instability
398(1)
8.4.5 Helium Embrittlement
398(1)
8.4.6 Irradiation Creep
399(1)
8.4.7 Swelling
400(2)
8.5 Hydrogen Recycling
402(4)
8.5.1 Reflection
403(1)
8.5.2 Spontaneous Desorption
404(1)
8.5.3 Stimulated Desorption
405(1)
8.6 Impurity Introduction
406(14)
8.6.1 Physical Sputtering
406(6)
8.6.2 Physichemical Sputtering
412(1)
8.6.3 Chemical Erosion
412(1)
8.6.4 Impurity Desorption
413(1)
8.6.5 Vaporization
413(3)
8.6.6 Blistering and Flaking
416(2)
8.6.7 Unipolar Arcs
418(2)
8.6.8 Synergistic Effects
420(1)
8.7 Wall Modifications
420(2)
8.7.1 Phase Changes
421(1)
8.7.2 Alloy Composition Changes
421(1)
8.7.3 Microstructural Changes
421(1)
8.7.4 Macrostructural Changes
421(1)
8.7.5 Property Changes
422(1)
8.8 Specific Materials
422(14)
8.8.1 Beryllium
422(1)
8.8.2 RAFM Steels
423(2)
8.8.3 ODS Steels
425(1)
8.8.4 Tungsten
426(2)
8.8.5 Vanadium
428(1)
8.8.6 Ceramics
429(1)
8.8.7 Graphite
429(1)
8.8.8 Silicon Carbide
430(2)
8.8.9 Copper
432(1)
8.8.10 Superconducting Magnets and Cryostats
432(2)
8.8.11 Liquid Metals
434(2)
8.9 Dust in Fusion Devices
436(2)
8.9.1 Dust Measurement on Surfaces
436(1)
8.9.2 Dust Measurement in Plasma
437(1)
8.9.3 Dust Effects and Removal
437(1)
8.10 Irradiation Facilities
438(6)
8.10.1 Need for Fusion Neutron Source
438(1)
8.10.2 IFMIF Parameters
439(5)
8.11 Materials Selection Considerations
444(1)
8.12 Summary
445(1)
8.13 Problems
446(1)
8.14 Review Questions
446(5)
References
447(4)
9 Vacuum Systems
451(40)
Thomas J. Dolan
Martin J. Neumann
9.1 Background
451(2)
9.1.1 Historical Development
451(2)
9.1.2 Need for Ultra-High Vacuum
453(1)
9.2 Viscous Flow and Molecular Flow
453(9)
9.2.1 Throughput
454(2)
9.2.2 Flow Equations
456(1)
9.2.3 Conductance
457(3)
9.2.4 Pumpdown Time
460(2)
9.3 Pumps
462(9)
9.3.1 Mechanical Pumps
462(3)
9.3.2 Jet Pumps
465(3)
9.3.3 Sublimation Pumps
468(1)
9.3.4 Cryosorption Pumps
468(2)
9.3.5 Cryogenic Pumps
470(1)
9.4 Pressure Gages
471(5)
9.5 Vacuum Chambers and Components
476(3)
9.6 Vacuum Techniques
479(4)
9.6.1 Monolayers
479(1)
9.6.2 Vacuum Chamber Cleaning
480(2)
9.6.3 Leak Detection
482(1)
9.7 ITER Vacuum Systems
483(3)
9.8 Conclusions
486(1)
9.9 Problems
486(2)
9.10 Review Questions
488(3)
References
488(3)
10 Cryogenic Systems
491(22)
Thomas J. Dolan
10.1 Introduction
491(2)
10.2 Properties of Materials at Low Temperatures
493(7)
10.2.1 Mechanical Properties
493(1)
10.2.2 Thermal Properties
494(4)
10.2.3 Electrical Resistivity
498(1)
10.2.4 Cryogenic Liquids
498(2)
10.3 Refrigeration and Liquefaction
500(3)
10.4 Insulation
503(3)
10.5 Cryostats
506(1)
10.6 ITER Cryogenic System
507(2)
10.7 Problems
509(1)
10.8 Review Questions
510(3)
References
511(2)
11 Plasma Diagnostics
513(106)
Thomas J. Dolan
Alan E. Costley
Jana Brotankova
11.1 Requirements
513(3)
11.2 Electrical Probes
516(6)
11.2.1 Single Langmuir Probe
516(2)
11.2.2 Double Probe
518(1)
11.2.3 Effect of Magnetic Field
519(1)
11.2.4 Other Designs of Electrostatic Probes
519(3)
11.3 Magnetic Flux Measurements
522(3)
11.3.1 Flux Coils
522(2)
11.3.2 Hall Probes
524(1)
11.4 Ions and Neutral Atoms
525(6)
11.4.1 Electrons and Ions
525(1)
11.4.2 Charge-Exchange Neutral Atoms
526(3)
11.4.3 Suprathermal Ions
529(1)
11.4.4 Particle Deposition Diagnostics
530(1)
11.5 Neutron Measurements
531(9)
11.5.1 Gas-Filled Proportional Counters and Fission Chambers
532(2)
11.5.2 Scintillation Detectors
534(1)
11.5.3 Foil Activation
535(1)
11.5.4 Neutron Spectroscopy
535(1)
11.5.5 Time-of-Flight Spectrometry
536(1)
11.5.6 Proton Recoil
536(3)
11.5.7 Neutron Emission Imaging
539(1)
11.6 Passive Wave Diagnostics
540(30)
11.6.1 Ionization States and Atomic Energy Levels
540(2)
11.6.2 Radiation Power Density
542(3)
11.6.3 Bremsstrahlung
545(1)
11.6.4 Spectral Line Shapes
546(4)
11.6.5 Spectral Line Intensities
550(1)
11.6.6 Visible Spectroscopy
550(1)
11.6.7 Photography
551(2)
11.6.8 Bolometers
553(1)
11.6.9 Ultraviolet Measurements
554(4)
11.6.10 Soft X-ray Measurements
558(1)
11.6.11 Pulse Height Analysis Systems
558(2)
11.6.12 X-ray Crystal Spectroscopy
560(1)
11.6.13 Soft X-ray Tomography
561(3)
11.6.14 Hard X-ray Measurements
564(1)
11.6.15 Electron Cyclotron Emission
565(5)
11.7 Active Particle Diagnostics
570(12)
11.7.1 Beam Emission Spectroscopy
570(3)
11.7.2 Charge Exchange Recombination Spectroscopy
573(3)
11.7.3 Lithium Beam Spectroscopy
576(1)
11.7.4 Motional Stark Effect
577(2)
11.7.5 Rutherford Scattering
579(1)
11.7.6 Heavy Ion Beam Probes
579(2)
11.7.7 Impurity Injection
581(1)
11.8 Active Wave Diagnostics
582(15)
11.8.1 Wave Propagation
582(1)
11.8.2 Wave Propagation Equations
583(2)
11.8.3 Polarimetry
585(1)
11.8.4 Reflectometry
586(2)
11.8.5 Interferometers
588(4)
11.8.6 Thomson Scattering
592(4)
11.8.7 Laser Induced Fluorescence
596(1)
11.9 ITER Diagnostics
597(12)
11.9.1 Burning Plasma Issues
605(4)
11.9.2 ITER Schedule
609(1)
11.10 Summary
609(1)
11.11 Problems
610(3)
11.12 Review Questions
613(6)
References
614(5)
12 Safety and Environment
619(34)
Thomas J. Dolan
Lee C. Cadwallader
12.1 Introduction
619(1)
12.2 Tritium
619(15)
12.2.1 Tritium Inventory
621(1)
12.2.2 Biological Hazard
622(1)
12.2.3 Tritium Production Rate
622(2)
12.2.4 Routine Emissions
624(1)
12.2.5 Tritium Permeation Rates
625(3)
12.2.6 Tritium Recovery Systems
628(4)
12.2.7 Accidental Tritium Release
632(1)
12.2.8 Tritium Supply and Cost
632(2)
12.3 Other Radioisotopes
634(4)
12.3.1 Production
634(2)
12.3.2 Radioactive Materials
636(1)
12.3.3 Disposition of Radioactive Materials
637(1)
12.4 Hazards and Materials Shortages
638(3)
12.4.1 Hazards
638(1)
12.4.2 Materials Shortages
638(3)
12.4.3 Summary of Environmental Effects
641(1)
12.5 Safety Analysis
641(8)
12.5.1 Normal Operations
642(1)
12.5.2 Accidents
643(1)
12.5.3 Failure Mode and Effect Analysis
644(1)
12.5.4 Occupational Radiation Exposure (ORE)
645(1)
12.5.5 Aries-At Safety Analysis
646(2)
12.5.6 US Safety Standard
648(1)
12.6 Nonproliferation
649(1)
12.7 Summary
649(1)
12.8 Problems
649(1)
12.9 Review Questions
650(3)
References
651(2)
13 Power Plant Designs
653(46)
Thomas J. Dolan
Lester M. Waganer
Lee C. Cadwallader
13.1 Introduction: Attractive Power Plants
653(4)
13.1.1 Economics
654(1)
13.1.2 Regulatory Simplicity
655(1)
13.1.3 Public Acceptance
656(1)
13.2 Reliability, Availability, and Maintainability
657(11)
13.2.1 Reliability
657(2)
13.2.2 Availability
659(3)
13.2.3 Maintainability
662(5)
13.2.4 Remote Handling
667(1)
13.3 Economics
668(4)
13.3.1 Competitiveness of Fusion Energy
672(1)
13.4 Economy of Scale
672(4)
13.4.1 Economy of Scale Issues
672(2)
13.4.2 Reasons for Economy of Scale
674(2)
13.5 European Power Plant Designs
676(3)
13.6 Japanese Power Plant Designs
679(2)
13.6.1 Helical Reactor
679(2)
13.6.2 Spherical Tokamak
681(1)
13.7 Chinese Power Plant Designs
681(6)
13.7.1 Power Plant for Electricity Generation
682(1)
13.7.2 Hydrogen Production Plant
683(1)
13.7.3 Fusion-Fission Hybrid Power Plants
684(1)
13.7.4 Tritium Breeding Module (TBM) for ITER and Demo
685(1)
13.7.5 Materials Research
686(1)
13.8 United States Power Plant Designs
687(4)
13.8.1 Aries Designs
687(1)
13.8.2 Aries-At
687(4)
13.8.3 Stellarators
691(1)
13.9 Summary
691(1)
13.10 Problems
692(1)
13.10.1 Reliability
692(1)
13.10.2 Availability
692(1)
13.10.3 Maintainability
693(1)
13.11 Review Questions
693(6)
References
694(5)
14 Fusion-Fission Hybrid Reactors
699(44)
Ralph W. Moir
Wally Manheimer
14.1 Introduction: Why Fusion-Fission Hybrids?
699(6)
14.1.1 Advantages Over Fission Breeder Reactors
702(3)
14.2 Fusion Drivers
705(5)
14.2.1 Tokamaks
705(2)
14.2.2 Other Magnetic Confinement Devices
707(1)
14.2.3 Inertial Fusion
707(3)
14.3 Blankets and Neutronics
710(10)
14.3.1 Basic Processes
710(5)
14.3.2 Infinite Homogeneous Medium
715(2)
14.3.3 Two-Zone Heterogeneous Blanket
717(3)
14.4 Blanket Designs for Fuel production
720(6)
14.4.1 Molten-Salt Blanket Designs-Fission-Suppressed Fusion Breeder
720(1)
14.4.2 Fission-Suppressed Blanket Based on Liquid Lithium Multiplier
721(3)
14.4.3 Gas-Cooled Designs: Fast-Fission Fuel Producers
724(1)
14.4.4 Liquid-Metal Blanket Designs
724(2)
14.5 Blanket Designs for Waste Incineration
726(5)
14.5.1 Hard Spectrum Sodium-Cooled, Minor-Actinide Burner (University of Texas)
727(2)
14.5.2 Hard Spectrum, Sodium Cooled, All Transuranics Burner (Georgia Tech University)
729(1)
14.5.3 Molten Salt Waste Burner, All Transuranics
730(1)
14.5.4 Pu Waste Burning Molten Salt Inertial Fusion Reactor
731(1)
14.6 Blanket Designs for High Power Production
731(1)
14.7 Safety
732(1)
14.8 Nonproliferation
733(2)
14.8.1 Proliferation Resistance from 232U
734(1)
14.9 The Energy Park
735(3)
14.10 Problems
738(1)
14.11 Review Questions
738(5)
References
739(4)
Appendix A Units 743(6)
Appendix B Constants 749(2)
Appendix C Error Function 751(2)
Appendix D Vector Relations 753(4)
Appendix E Abbreviations 757(6)
Appendix F Symbols Used in Equations 763(14)
Appendix G Answers to Problems 777(14)
Index 791
Thomas J. Dolan's work has been in plasma confinement by magnetic fields, plasma diagnostics, and fusion power plant design studies. He developed three courses at the University of Missouri-Rolla on fusion research principles, fusion experiments, and fusion technology, which became the first edition of this book. Since then he has worked at national laboratories, universities, and in industry (Phillips Petroleum Company) on fusion research and other nuclear topics. As Head of the Physics Section of the International Atomic Energy Agency (IAEA) he helped facilitate international cooperation in fusion research, including organization of the semi-annual IAEA Fusion Energy Conferences. Since then he has taught courses on fusion research at the University of Illinois, in China, and in India.

Ralph W. Moir received his B.S. in Engineering Physics in 1962 from the University of California, Berkeley, USA. He obtained his Sc.D. in Nuclear Engineering in 1967 from MIT, Cambridge, Mass., USA. Between 1968 and 2000 he worked at the Lawrence Livermore National Laboratory as a plasma physicist and nuclear engineer on fusion and fission reactors. Since his retirement in 2000 he has researched magnetic and inertial fusion energy power plant technology and molten fission power plants on thorium cycles. He is a registered professional nuclear engineer in the state of California, and a fellow of the American Physical Society and American Nuclear Society.

Wallace Manheimer received his undergraduate and graduate education at MIT. He has worked at the U.S. Naval Research Laboratory since 1970 and has worked on many areas of plasma science, relativistic electron beams, microwave sources, and radar systems. Since 1999 he has been very active in working on, and promoting the concept of, hybrid fusion, and especially fission suppressed hybrid fusion, as he sees this as fitting well into existing nuclear infrastructure.

Lee C. Cadwallader works on the safety ofhigh technology energy systems. He specializes in component failure data collection/analysis, operating experience data, accident-initiating event data and system failure event information support for public and worker safety. He is a safety/risk researcher, safety inspector, and incident investigator.

Martin J. Neumann is Acting Director of the Center for Plasma-Material Interactions and, since 2009, has been Adjunct Professor at the Department of Nuclear, Plasma and Radiological Engineering in the University of Illinois at Urbana-Champaign. He received his PhD in Nuclear Engineering from the same university in 2007. He is a member of AVS, SPIE, IEEE and MRS.