Muutke küpsiste eelistusi

E-raamat: Magnetic Helicity, Spheromaks, Solar Corona Loops, And Astrophysical Jets

(California Inst Of Tech, Usa)
  • Formaat: 652 pages
  • Ilmumisaeg: 12-Mar-2018
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786345165
  • Formaat - EPUB+DRM
  • Hind: 69,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 652 pages
  • Ilmumisaeg: 12-Mar-2018
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786345165

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Pedagogical in style, this book provides insights into plasma behavior valid over twenty orders of magnitude in both time and space. The book assumes that the reader has a basic knowledge of magnetohydrodynamics and explains topics using detailed theoretical analysis supported by discussion of relevant experiments. This comprehensive approach gives the reader an understanding of the essential theoretical ideas and their application to real situations.The book starts by explaining the topological concept of magnetic helicity and then develops a helicity-based model that predicts the ultimate state towards which magnetically-dominated plasmas evolve. The model predicts that no matter how messy or complicated the dynamics, a great range of plasma configurations always self-organize to a unique, simple final state. This self-organization, called relaxation, is a fundamental concept that unifies understanding of spheromaks, solar corona loops, interplanetary magnetic clouds, and astrophysical jets.After establishing why relaxation occurs, the book then examines how relaxation occurs. It shows that relaxation involves a sequence of complex non-equilibrium dynamics including fast self-collimated plasma jets, kink instabilities, magnetic reconnection, and phenomena outside the realm of magnetohydrodynamics.
Preface xvii
1 Introduction 1(24)
1.1 Brief description of spheromaks
1(4)
1.2 History and time-line
5(20)
1.2.1 Pre-1970: Antecedents of the spheromak
6(5)
1.2.2 Advances in theory: Taylor relaxation and development of the theoretical model for the spheromak
11(1)
1.2.3 The 1980's: The spheromak investigated as a fusion confinement scheme
12(2)
1.2.4 The 1990's: Search for other applications and renaissance in confinement efforts
14(1)
1.2.5 2000 to time of writing: SSPX, HIT-SI, General Fusion, investigation of dynamics, inclusion of Hall term
15(10)
2 Basic Concepts 25(30)
2.1 The different levels of description of a plasma
25(4)
2.1.1 Follow every particle
25(1)
2.1.2 Vlasov description
26(1)
2.1.3 Two-fluid description
26(1)
2.1.4 MHD description
27(1)
2.1.5 Dynamical and β assumptions in MHD
28(1)
2.2 Scaling between lab and space plasmas
29(4)
2.3 Vacuum (potential) magnetic fields
33(2)
2.4 Poloidal and toroidal fields
35(2)
2.5 Magnetic stress tensor
37(3)
2.6 Beta
40(1)
2.7 Magnetic flux and symmetry
41(1)
2.8 Poloidal flux
41(1)
2.9 Poloidal flux and particle confinement
42(1)
2.10 Relation between field, field lines, and flux
43(1)
2.11 Safety factor
44(5)
2.12 The plasma as a magnetic flux conserver
49(1)
2.13 The condition for frozen-in flux
50(2)
2.14 Tendency of the plasma to maximize its inductance
52(1)
2.15 Cowling's theorem
52(3)
3 Magnetic Helicity 55(40)
3.1 The issue of analyticity in Gauss's and Stokes's theorems
56(2)
3.2 Definition of magnetic helicity
58(2)
3.3 Helicity, safety factor, and twist of an isolated flux tube
60(3)
3.4 Gauge invariance
63(1)
3.5 Relative helicity
64(4)
3.6 Simply connected volumes v. doubly connected volumes
68(2)
3.6.1 Relative helicity suitable for doubly connected volumes
68(2)
3.7 Helicity conservation equation
70(9)
3.7.1 Fixed volume, simply connected region, open field lines
71(5)
3.7.2 Fixed volume - Doubly connected region
76(1)
3.7.3 Comparison between helicity injection into simply and double connected volumes
77(1)
3.7.4 Time-dependent volume with no open field lines
77(1)
3.7.5 Comparison of helicity conservation to energy conservation
78(1)
3.8 Single species helicity and association with whistler wave physics
79(3)
3.9 Magnetic reconnection
82(1)
3.10 Geometric interpretation of magnetic helicity
82(7)
3.10.1 Twist, linking, and crossing
84(3)
3.10.2 Writhe
87(2)
3.11 Magnetic reconnection and helicity conservation
89(3)
3.12 Reconnection and dissipation
92(3)
4 Relaxation of an Isolated Configuration to the Taylor State 95(20)
4.1 Introduction
95(2)
4.2 Helicity decay rate v. magnetic energy decay rate
97(1)
4.3 Derivation of the isolated Taylor state
97(3)
4.4 Relationship between helicity, energy, eigenvalue
100(2)
4.4.1 Equality of poloidal and toroidal field energies in an isolated axisymmetric spheromak
101(1)
4.5 Cylindrical force-free states
102(2)
4.6 Ohmic Decay of an Isolated Taylor State
104(3)
4.7 Comparison of minimum energy states in a long cylinder
107(2)
4.8 Spheromaks in spherical geometry
109(6)
5 Relaxation in Driven Configurations 115(8)
5.1 Taylor relaxation in systems with open field lines
116(3)
5.1.1 Relation between energy and helicity for system with open field lines
119(1)
5.2 Helicity injection
119(2)
5.2.1 Bounding surface is an equipotential
120(1)
5.2.2 Bounding surface is not an equipotential
120(1)
5.3 Impedance of the driven force-free configuration
121(2)
6 The MHD Energy Principle, Helicity, and Taylor States 123(20)
6.1 Derivation of the MHD Energy Principle
123(11)
6.2 Relationship of the energy principle to Taylor states
134(1)
6.3 Beta limit
135(8)
7 Survey of Spheromak Formation Schemes 143(18)
7.1 Magnetized coaxial gun
146(4)
7.2 Non-axisymmetric gun method
150(1)
7.3 The inductive method
150(5)
7.4 Z-Theta pinch method
155(2)
7.5 Steady inductive injection using quadrature-phased oscillating inductive injectors
157(4)
8 Classification of Regimes: An Imperfect Analogy to Thermodynamics 161(8)
8.1 Room full of springs analogy
161(1)
8.2 Analogy to thermodynamics
161(1)
8.3 Classification of thermodynamic problems
162(3)
8.4 Analogy between lambda and temperature
165(2)
8.5 Strong and weak coupling
167(1)
8.6 Overview of next five chapters
167(2)
9 Analysis of Isolated Cylindrical Spheromaks 169(24)
9.1 Flux, current, magnetic field, helicity and energy
169(5)
9.2 Experimental measurements
174(2)
9.3 Safety factor for a zero-β spheromak
176(6)
9.3.1 Evaluation of q profile
178(2)
9.3.2 Effect of flux conserver shape on qwall
180(2)
9.4 Finite-β spheromak
182(11)
9.4.1 Derivation of the Grad-Shafranov Equation
183(1)
9.4.2 Finite-β spheromak solution
184(3)
9.4.3 Boundary
187(1)
9.4.4 Safety factor
188(5)
10 The Role of the Wall 193(14)
10.1 Helicity insulation
194(1)
10.2 Equilibrium
194(5)
10.3 Tilt stability
199(8)
11 Analysis of Driven Spheromaks: Strong Coupling 207(30)
11.1 Force-free equilibria with open field lines
208(7)
11.2 Flux surfaces
215(7)
11.3 Safety factor variation with lambda
222(1)
11.4 Flux amplification
222(1)
11.5 Relative helicity
223(3)
11.6 Relative energy
226(3)
11.7 Gun efficiency
229(1)
11.8 Gun impedance and load line
230(7)
12 Helicity Flow and Dynamos 237(30)
12.1 Downhill flow of helicity
237(4)
12.1.1 An isolated spheromak acting as a helicity source
239(2)
12.2 Dynamos and relaxation mechanisms
241(9)
12.2.1 Paradox of the driven axisymmetric spheromak
241(4)
12.2.2 Physical constraints on coefficients of Fourier expansions in cylindrical coordinates
245(5)
12.3 Observations of flux conversion dynamo behavior
250(9)
12.4 Lagrangian Description Showing no Dynamo in Plasma Frame
259(4)
12.5 Deviation from the Taylor state
263(4)
12.5.1 Force-free limit of Grad-Shafranov equation
263(4)
13 Confinement and Transport in Spheromaks 267(22)
13.1 Overview
267(1)
13.2 Confinement on flux surfaces
267(2)
13.3 Confinement times
269(1)
13.4 Survey of transport mechanisms
270(9)
13.4.1 Diffusive processes
270(4)
13.4.2 Non-diffusive processes
274(1)
13.4.3 Magnetic energy and magnetic helicity
275(2)
13.4.4 Relationship between magnetic energy and thermal energy decay times
277(1)
13.4.5 Dissipation in a single flux tube
278(1)
13.5 Experiments on transport in spheromaks
279(6)
13.5.1 S-1 measurements
279(2)
13.5.2 S-1 particle confinement measurement
281(1)
13.5.3 Edge losses
281(1)
13.5.4 CTCC-I gettering experiments
281(2)
13.5.5 The CTX gettered, solid flux conserver experiment
283(1)
13.5.6 Evidence for good confinement: hard X-rays on CTX
283(1)
13.5.7 SSPX Conclusions: Conflict between good confinement and helicity injection
284(1)
13.6 Anomalous ion heating
285(4)
14 Some Important Practical Issues 289(20)
14.1 Breakdown and Paschen curves
289(6)
14.2 Gas puff valves
295(2)
14.3 Wall desorption and contamination
297(3)
14.4 Impurity line radiation
300(2)
14.5 Refractory electrode materials
302(1)
14.6 Skin effect and the wall as a flux conserver
303(1)
14.7 Inductance budget
304(1)
14.8 Mechanical forces
305(1)
14.9 Noise radiation from pulsed power supplies
305(1)
14.10 Ground loops
306(3)
15 Basic Diagnostics for Spheromaks 309(22)
15.1 Magnetic field and electric current measurement
309(5)
15.2 Equilibrium reconstruction using measurements at the wall
314(1)
15.3 Voltage measurements
314(1)
15.4 Density measurement
315(7)
15.4.1 Langmuir probe (triple probe)
315(3)
15.4.2 Interferometry
318(4)
15.5 Ion temperature measurement
322(3)
15.5.1 Impurity Doppler shift
322(2)
15.5.2 Neutral particle analysis
324(1)
15.6 Electron temperature measurement
325(3)
15.6.1 Langmuir probes
325(1)
15.6.2 Thomson scattering
325(3)
15.7 Impurity radiation measurements
328(3)
15.7.1 Spectroscopic identification of ionization states
328(1)
15.7.2 Bolometry
328(3)
16 Applications of Spheromaks 331(24)
16.1 The spheromak as a fusion reactor
331(8)
16.2 Accelerated spheromaks
339(4)
16.3 Magnetized Target Fusion
343(2)
16.4 Tokamak Fuel injection
345(2)
16.5 Helicity injection current drive in tokamaks
347(3)
16.6 Colliding spheromaks to investigate magnetic reconnection
350(2)
16.7 Proposed additional spheromak applications
352(3)
16.7.1 Pulsed high power X-ray radiation sources
352(1)
16.7.2 Opening switches
353(2)
17 Initial dynamics leading to relaxation: MHD jets 355(22)
17.1 MHD-driven collimated jet
361(8)
17.1.1 Bernoulli relation: overview via garden hose analog
361(1)
17.1.2 Flux function derivation
362(7)
17.2 Jet collimation
369(6)
17.2.1 Jet direction insensitive to current direction
375(1)
17.3 Association with helicity injection
375(2)
18 Dynamics associated with relaxation: Kinks, Rayleigh-Taylor, Hard X-rays 377(20)
18.1 Kink Instability of the Jet
377(3)
18.2 The kink instability as an agent of relaxation
380(1)
18.3 The Rayleigh-Taylor instability as an agent of reconnection
381(3)
18.4 Production of Hard X-rays
384(11)
18.5 Comparison of actual experimental observations with predictions of Taylor relaxation model
395(2)
19 Beyond MHD: Whistler Waves and Fast Magnetic Reconnection 397(40)
19.1 Quick review of resistive MHD reconnection
398(5)
19.2 Generalized Ohm's law and relative scaling of its terms
403(6)
19.3 Implications of Hall MHD
409(1)
19.3.1 Flux frozen into electron fluid rather than plasma center of mass
409(1)
19.4 Whistler waves in the limit of zero electron inertia
410(3)
19.4.1 Polarization and helicity content of whistler waves
411(2)
19.5 Hall reconnection with finite electron inertia
413(14)
19.5.1 Distinction between low and high β reconnection: guide field or not
414(1)
19.5.2 Hall reconnection analysis
414(11)
19.5.3 Discussion and implications
425(2)
19.6 Canonical circulation flux tube derivation of 2-fluid reconnection
427(10)
19.6.1 Non-linear equations for 2-fluid reconnection
427(1)
19.6.2 Using a Q flux tube instead of a magnetic field line
428(1)
19.6.3 Equilibrium properties of Q
429(1)
19.6.4 Perturbation from Q equilibrium
430(1)
19.6.5 Quadrupole magnetic field and quadrupole Q
430(4)
19.6.6 Proof that Q does not reconnect
434(1)
19.6.7 Amplification of Q
434(1)
19.6.8 Creation of torsion in Q flux tube
435(1)
19.6.9 Narrowing of current layer
436(1)
19.6.10 Growth rate scaling
436(1)
20 Zero-β models for solar and space phenomena: Helicity, force-free equilibria 437(24)
20.1 Overview
437(11)
20.2 Sun-Earth connection viewed as helicity flux/relaxation
448(1)
20.3 A simple linear-force free model of coronal loops
449(9)
20.3.1 Setup of problem and derivation of solution
449(5)
20.3.2 S-shapes
454(1)
20.3.3 Flux tube bifurcation and breakup
455(2)
20.3.4 Comparison of magnetic field, field lines, flux tubes
457(1)
20.3.5 Relaxation and line tying
457(1)
20.4 Force-free state for arbitrary boundary conditions
458(3)
21 Finite-β models and experiments for solar phenomena: collimation, flows, expansion 461(50)
21.1 Boundary conditions
461(17)
21.1.1 Solar surface boundary conditions
462(3)
21.1.2 Electrostatic potential drop associated with the twisting of a magnetic flux loop
465(8)
21.1.3 Relation to Alfven waves
473(2)
21.1.4 Motivation for the "gobble" finite beta model
475(3)
21.2 The gobble model
478(21)
21.2.1 Stage 1: current ramp-up
484(4)
21.2.2 Stage 2: ramped-up, constant current but no force balance
488(3)
21.2.3 Stage 3: Stagnation and collimation
491(3)
21.2.4 Hoop force and the gobble model
494(5)
21.3 Difference between finite and zero β models and consequences
499(1)
21.3.1 Torus Instability
499(1)
21.3.2 Co- and counter-helicity merging
500(1)
21.4 Solar loop simulation experiment
500(11)
21.4.1 Loop expansion and collimation
503(3)
21.4.2 Plasma upflow from footpoints
506(2)
21.4.3 Magnetic measurements supporting the gobble model
508(1)
21.4.4 Hoop force explanation for the dip seen in the bottom of Fig. 21.12
508(3)
22 Beyond MHD: Extreme particle orbits in helical magnetic fields 511(12)
22.1 Radial Unstable Motion (RUM) in a helical magnetic field
512(5)
22.1.1 Lorentz equation derivation of RUM instability
512(2)
22.1.2 Hamiltonian-Lagrangian derivation of the RUM instability
514(3)
22.2 Stochastic ion heating in a rapidly twisting or untwisting magnetic field
517(6)
23 Finite-β toroidal magnetic cloud model 523(8)
23.1 Introduction to magnetic clouds
523(2)
23.2 Magnetic cloud solution to Grad-Shafranov equation in toroidal geometry
525(6)
24 Astrophysical Jets, Accretion, Angular Momentum Removal, and Space Dynamos 531(30)
24.1 Introduction
531(1)
24.2 Field and current topology in astrophysical jets
532(8)
24.2.1 Inadequacy of Ideal MHD Ohm's Law to Model Accretion
538(2)
24.3 Kepler v. Cyclotron Orbits
540(2)
24.4 Charged dust grains as a method for having a cyclotron frequency comparable to the Kepler frequency
542(1)
24.5 Weak ionization as a method for having an effective cyclotron frequency comparable to the Kepler frequency
543(3)
24.6 Inward Spiral Orbits of Zero-Canonical Angular Momentum Particles
546(3)
24.7 Meta-Particle Inward Spiral from the Point of View of Hall Ohm's Law
549(1)
24.8 Accretion and removal of angular momentum via magnetic braking
550(7)
24.8.1 Braking torque interpreted using conservation of canonical angular momentum
550(6)
24.8.2 Braking torque from the MHD equation of motion
556(1)
24.9 Dynamo to generate poloidal magnetic field
557(4)
Appendix A Vector Identities and Operators 561(2)
Appendix B Bessel Orthogonality Relations 563(4)
Appendix C Capacitor Banks 567(4)
Appendix D Transmission lines, pulse forming networks, and transformers 571(18)
D.1 Transmission lines
571(6)
D.1.1 Wave propagation along a transmission line
571(3)
D.1.2 Propagation velocity
574(1)
D.1.3 Characteristic impedance
574(1)
D.1.4 Matching, mismatching and reflected waves
575(2)
D.2 Pulse forming networks
577(1)
D.3 Transformers
578(11)
D.3.1 Ideal Transformers
579(1)
D.3.2 Transformer equations (resistive loads)
580(2)
D.3.3 Non-ideal transformers
582(2)
D.3.4 Pulse rise-time (high frequency response)
584(1)
D.3.5 Low-frequency response
584(1)
D.3.6 Air-core and iron-core transformers
585(1)
D.3.7 Calculating inductance of iron core transformers
586(1)
D.3.8 Measuring self and mutual inductances
586(3)
Appendix E Selected Formulae 589(10)
Bibliography 599(24)
Index 623