Muutke küpsiste eelistusi

E-raamat: Magnetic Memory Technology: Spin-transfer-Torque MRAM and Beyond

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119562283
  • Formaat - EPUB+DRM
  • Hind: 139,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119562283

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

STAY UP TO DATE ON THE STATE OF MRAM TECHNOLOGY AND ITS APPLICATIONS WITH THIS COMPREHENSIVE RESOURCE

Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond delivers a combination of foundational and advanced treatments of the subjects necessary for students and professionals to fully understand MRAM and other non-volatile memories, like PCM, and ReRAM. The authors offer readers a thorough introduction to the fundamentals of magnetism and electron spin, as well as a comprehensive analysis of the physics of magnetic tunnel junction (MTJ) devices as it relates to memory applications.

This book explores MRAM's unique ability to provide memory without requiring the atoms inside the device to move when switching states. The resulting power savings and reliability are what give MRAM its extraordinary potential. The authors describe the current state of academic research in MRAM technology, which focuses on the reduction of the amount of energy needed to reorient magnetization.

Among other topics, readers will benefit from the book's discussions of:





An introduction to basic electromagnetism, including the fundamentals of magnetic force and other concepts An thorough description of magnetism and magnetic materials, including the classification and properties of magnetic thin film properties and their material preparation and characterization A comprehensive description of Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) devices and their equivalent electrical model Spin current and spin dynamics, including the properties of spin current, the Ordinary Hall Effect, the Anomalous Hall Effect, and the spin Hall effect Different categories of magnetic random-access memory, including field-write mode MRAM, Spin-Torque-Transfer (STT) MRAM, Spin-Orbit Torque (SOT) MRAM, and others

Perfect for senior undergraduate and graduate students studying electrical engineering, similar programs, or courses on topics like spintronics, Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond also belongs on the bookshelves of engineers and other professionals involved in the design, development, and manufacture of MRAM technologies.
Preface xi
Author Biographies xiv
List of Cited Tables and Figures xvi
1 Basic Electromagnetism 1(18)
1.1 Introduction
1(1)
1.2 Magnetic Force, Pole, Field, and Dipole
1(2)
1.3 Magnetic Dipole Moment, Torque, and Energy
3(2)
1.4 Magnetic Flux and Magnetic Induction
5(1)
1.5 Ampere's Circuital Law, Biot-Savart Law, and Magnetic Field from Magnetic Material
6(5)
1.5.1 Ampere's Circuital Law
6(2)
1.5.2 Biot-Savart's Law
8(2)
1.5.3 Magnetic Field from Magnetic Material
10(1)
1.6 Equations, cgs-SI Unit Conversion Tables
11(2)
Homework
13(4)
References
17(2)
2 Magnetism and Magnetic Materials 19(48)
2.1 Introduction
19(1)
2.2 Origin of Magnetization
19(9)
2.2.1 From Ampere to Einstein
19(2)
2.2.2 Precession
21(1)
2.2.3 Electron Spin
22(2)
2.2.4 Spin-Orbit Interaction
24(1)
2.2.5 Hund's Rules
25(3)
2.3 Classification of Magnetisms
28(14)
2.3.1 Diamagnetism
30(1)
2.3.2 Paramagnetism
30(4)
2.3.3 Ferromagnetism
34(3)
2.3.4 Antiferromagnetism
37(3)
2.3.5 Ferrimagnetism
40(2)
2.4 Exchange Interactions
42(7)
2.4.1 Direct Exchange
43(2)
2.4.2 Indirect Exchange: Superexchange
45(1)
2.4.3 Indirect Exchange: RKKY Interaction
46(2)
2.4.4 Dzyaloshinskii-Moriya Interaction (DMI)
48(1)
2.5 Magnetization in Magnetic Metals and Oxides
49(2)
2.5.1 Slater-Pauling Curve
49(1)
2.5.2 Rigid Band Model
50(1)
2.5.3 Iron Oxides and Iron Garnets
51(1)
2.6 Phenomenology of Magnetic Anisotropy
51(3)
2.6.1 Uniaxial Anisotropy
52(1)
2.6.2 Cubic Anisotropy
53(1)
2.7 Origins of Magnetic Anisotropy
54(3)
2.7.1 Shape Anisotropy
55(1)
2.7.2 Magnetocrystalline Anisotropy (MCA)
56(1)
2.7.3 Perpendicular Magnetic Anisotropy (PMA)
57(1)
2.8 Magnetic Domain and Domain Walls
57(3)
2.8.1 Domain Wall
58(1)
2.8.2 Single Domain and Superparamagnetism
59(1)
Homework
60(4)
References
64(3)
3 Magnetic Thin Films 67(10)
3.1 Introduction
67(1)
3.2 Magnetic Thin Film Growth
67(5)
3.2.1 Sputter Deposition
68(3)
3.2.2 Molecular Beam Epitaxy (MBE)
71(1)
3.3 Magnetic Thin Film Characterization
72(4)
3.3.1 Vibrating-Sample Magnetometer (VSM)
73(1)
3.3.2 Magneto-Optical Kerr Effect (MOKE)
74(2)
References
76(1)
4 Magnetoresistance Effects 77(16)
4.1 Introduction
77(1)
4.2 Anisotropic Magnetoresistance (AMR)
78(1)
4.3 Giant Magnetoresistance (GMR)
79(2)
4.4 Tunneling Magnetoresistance (TMR)
81(3)
4.5 Contemporary MTJ Designs and Characterization
84(5)
4.5.1 Perpendicular MTJ (p-MTJ)
85(1)
4.5.2 Fully Functional p-MTJ
85(2)
4.5.3 CIPT Approach for TMR Characterization
87(2)
Homework
89(1)
References
89(4)
5 Magnetization Switching and Field MRAMs 93(12)
5.1 Introduction
93(1)
5.2 Magnetization Reversible Rotation and Irreversible Switching Under External Field
93(6)
5.2.1 Magnetization Rotation Under an External Field in the Hard Axis Direction
94(1)
5.2.2 Magnetization Rotation and Switching Under an external Field in the Easy Axis Direction
95(1)
5.2.3 Magnetization Rotation and Switching Under Two Orthogonal External Fields
96(1)
5.2.4 Magnetization Behavior of a Synthetic Anti-ferromagnetic Film Stack
97(2)
5.3 Field MRAMs
99(3)
5.3.1 MTJ of Field MRAM
100(1)
5.3.2 Half-Select Bit Disturbance Issue
101(1)
Homework
102(1)
References
103(2)
6 Spin Current and Spin Dynamics 105(46)
6.1 Introduction to Hall Effects
105(4)
6.1.1 Ordinary Hall Effect
105(1)
6.1.2 Anomalous Hall Effect and Spin Hall Effect
106(3)
6.2 Spin Current
109(7)
6.2.1 Electron Spin Polarization in NM/FM/NM Film Stack
109(2)
6.2.2 Spin Current Injection, Diffusion, and Inverse Spin Hall Effect
111(3)
6.2.3 Generalized Carrier and Spin Current Drift-Diffusion Equation
114(2)
6.3 Spin Dynamics
116(8)
6.3.1 Landau-Lifshitz and Landau-Lifshitz-Gilbert Equations of Motion
116(2)
6.3.2 Ferromagnetic Resonance
118(2)
6.3.3 Spin Pumping and Effective Damping in FM/NM Film Stack
120(2)
6.3.4 FM/NM/FM Coupling Through Spin Current
122(2)
6.4 Interaction Between Polarized Conduction Electrons and Local Magnetization
124(10)
6.4.1 Electron Spin Torque Transfer to Local Magnetic Magnetization
124(1)
6.4.2 Macrospin Model
125(2)
6.4.3 Spin-Torque Transfer in a Spin Valve
127(4)
6.4.3.1 Switching Threshold Current Density
128(1)
6.4.3.2 Switching Time
129(2)
6.4.4 Spin-Torque Transfer Switching in Magnetic Tunnel Junction
131(2)
6.4.5 Spin-Torque Ferromagnetic Resonance and Torkance
133(1)
6.5 Spin Current Interaction with Domain Wall
134(4)
6.5.1 Domain Wall Motion under Spin Current
135(2)
6.5.2 Threshold Current Density
137(1)
Homework
138(6)
References
144(7)
7 Spin-Torque-Transfer (511) MRAM Engineering 151(54)
7.1 Introduction
151(1)
7.2 Thermal Stability Energy and Switching Energy
152(2)
7.3 STT Switching Properties
154(12)
7.3.1 Switching Probability and Write Error Rate (WER)
156(4)
7.3.2 Switching Current in Precessional Regime
160(1)
7.3.3 Switching Delay of an STT-MRAM Cell
161(1)
7.3.4 Read Disturb Rate
161(1)
7.3.5 Switching Under a Magnetic Field - Phase Diagram
162(2)
7.3.6 MTJ Switching Abnormality
164(1)
7.3.6.1 Magnetic Back-Hopping
164(1)
7.3.6.2 Bifurcation Switching (Ballooning in WER)
165(1)
7.3.6.3 Domain Mediated Magnetization Reversal
166(1)
7.4 The Integrity of MTJ Tunnel Barrier
166(3)
7.4.1 MgO Degradation Model
167(2)
7.5 Data Retention
169(4)
7.5.1 Retention Determination Based on Bit Switching Probability
169(1)
7.5.2 Energy Barrier Determination Based on Aiding Field
170(1)
7.5.3 Energy Barrier Extraction with Retention Bake at Chip Level
171(2)
7.5.4 Data Retention Fail at the Chip Level
173(1)
7.6 The Cell Design Considerations and Scaling
173(15)
7.6.1 STT-MRAM Bit Cell and Array
174(1)
7.6.2 CMOS Options
174(2)
7.6.3 Cell Switching Efficiency
176(1)
7.6.4 Cell Design Considerations
177(5)
7.6.4.1 WRITE Current and Cell Size
178(1)
7.6.4.2 READ Access Performance and RA Product of MTJ
178(1)
7.6.4.3 READ and WRITE Voltage Margins
178(1)
7.6.4.4 Stray Field Control for Perpendicular MTJ
179(2)
7.6.4.5 Suppress Stochastic Switching Time Variation Ideas
181(1)
7.6.5 The Scaling of MTJ for Memory
182(6)
7.6.5.1 In-Plane MTJ
183(1)
7.6.5.2 Out-of-Plane (Perpendicular) MTJ
184(4)
7.7 MTJ SPICE Models
188(3)
7.7.1 Basic MTJ Equivalent Circuit Model for Circuit Design Simulation
188(1)
7.7.2 MTJ SPICE Circuit Model with Embedded Macrospin Calculator
189(2)
7.8 Test Chip, Test, and Chip-Level Weak Bit Screening
191(4)
7.8.1 Read Marginal Bits
192(1)
7.8.2 Write Marginal Bits
193(1)
7.8.3 Short Retention Bits
193(1)
7.8.4 Low Endurance Bits
194(1)
Homework
195(2)
References
197(8)
8 Advanced Switching MRAM Modes 205(36)
8.1 Introduction
205(1)
8.2 Current-Induced-Domain-Wall Motion (CIDM) Memory
206(5)
8.2.1 Single-Bit Cell
207(2)
8.2.2 Multibit Cell: Racetrack
209(2)
8.3 Spin-Orbit Torque (SOT) Memory
211(13)
8.3.1 Spin Orbit Torque (SOT) MRAM Cells
211(8)
8.3.1.1 In-Plane SOT Cell
212(6)
8.3.1.2 Perpendicular SOT Cell
218(1)
8.3.2 Materials Choice for SOT-MRAM Cell
219(5)
8.3.2.1 Transition Metals and their Alloys
219(2)
8.3.2.2 Emergent Materials Systems
221(1)
8.3.2.3 Benchmarking of SOT Switching Efficiency
222(2)
8.4 Magneto-Electric Effect and Voltage-Control Magnetic Anisotropy (VCMA) MRAM
224(7)
8.4.1 Magneto-Electric Effects
224(3)
8.4.2 VCMA-Assisted MRAMs
227(15)
8.4.2.1 VCMA-Assisted Field-MRAM
227(2)
8.4.2.2 VCMA-Assisted Multi-bit-Word SOT-MRAM
229(1)
8.4.2.3 VCMA-Assisted Precession-Toggle MRAM
229(2)
8.5 Relative Merit of Advanced Switching Mode MRAMs
231(2)
Homework
233(1)
References
233(8)
9 MRAM Applications and Production 241(36)
9.1 Introduction
241(1)
9.2 Intrinsic Characteristics and Product Attributes of Emerging Nonvolatile Memories
242(5)
9.2.1 Intrinsic Properties
243(1)
9.2.2 Product Attributes
244(3)
9.3 Memory Landscape and MRAM Opportunity
247(19)
9.3.1 MRAM as Embedded Memory in Logic Chips
248(6)
9.3.1.1 Integration Issues of Embedded MRAM
248(1)
9.3.1.2 MRAM as Embedded Flash in Microcontroller
249(1)
9.3.1.3 Embedded MRAM Cell Size
250(1)
9.3.1.4 MRAM as Cache Memory in Processor
250(1)
9.3.1.5 Improvement of Access Latency
251(3)
9.3.2 High-Density Discrete MRAM
254(4)
9.3.2.1 Technology Status
254(2)
9.3.2.2 Ideal CMOS Technology for High-Density MRAM
256(2)
9.3.2.3 Improvement to Endurance and Write Error Rate with Error Buffer in Chip Architecture
258(1)
9.3.3 Applications and Market Opportunity of MRAM
258(8)
9.3.3.1 Battery-Backed DRAM Applications
260(1)
9.3.3.2 Internet of Things (IoT) and Cybersecurity Applications
261(3)
9.3.3.3 Applications to In-Memory Computing, and Artificial Intelligence (AI)
264(1)
9.3.3.4 MRAM-Based Memory-Driven Computer
265(1)
9.4 MRAM Production
266(5)
9.4.1 MRAM Production Ecosystem
266(1)
9.4.2 MRAM Product History
267(4)
9.4.2.1 First-Generation MRAM - Field MRAM (Also Called Toggle MRAM)
268(1)
9.4.2.2 The Second-Generation MRAM - STT-MRAM
269(1)
9.4.2.3 The Potential Third-Generation MRAM - SOT MRAM
270(1)
Homework
271(1)
References
271(6)
Appendix A Retention Bake (Including Two-Way Flip) 277 (2)
Appendix B Memory Functionality-Based Scaling 279(20)
Appendix C High-Bandwidth Design Considerations for STT-MRAM 299(24)
Index 323
DENNY D. TANG, PHD, has been with IBM Watson and later Almaden Research Center, TSMC, and held a position as MRAM Architect in Western Digital. He Is a Live Fellow of IEEE, Fellow of TSMC Academy, a co-author of Magnetic Memory, Fundamentals and Technology, (2010).

CHI-FENG PAI, PHD, is now an Associate Professor of National Taiwan University (NTU). He is the recipient of Young Researcher Award of Asian Union of Magnetic Society (AUMS), Young Researcher Fellowship of Ministry of Science and Technology (MOST, Taiwan), and Young Researcher Award of Taiwan Semiconductor Industry Association (TSIA).