Muutke küpsiste eelistusi

E-raamat: Magnetic Phase Transitions In Single Crystals

(Univ Of California, Santa Cruz, Usa)
  • Formaat: 248 pages
  • Ilmumisaeg: 27-Jul-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811259500
  • Formaat - PDF+DRM
  • Hind: 70,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 248 pages
  • Ilmumisaeg: 27-Jul-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811259500

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Magnetic crystals are ideal systems to study the universal properties of phase transitions, particularly systems with quenched randomness and frustration. Pure systems with different symmetries provide the foundation for studies in corresponding systemswith quenched randomness. Because phenomena near phase transitions have universal properties, results from bulk magnetic crystals provide a basis for understanding phase transitions in films and nanoparticles, as well as many non-magnetic materials. Thismotivates the subject of this book, which discusses and studies phase transitions in magnetic crystals from the perspective of an experimentalist who has done extensive work in the field. The advantage is that many experimental techniques are described in sufficient detail for a good understanding of the results and their comparison to theory"--

Magnetic Crystals Are Ideal Systems To Study The Universal Properties Of Phase Transitions, Particularly Systems With Quenched Randomness And Frustration. Pure Systems With Different Symmetries Provide The Foundation For Studies In Corresponding Systems With Quenched Randomness. Because Phenomena Near Phase Transitions Have Universal Properties, Results From Bulk Magnetic Crystals Provide A Basis For Understanding Phase Transitions In Films And Nanoparticles, As Well As Many Non-Magnetic Materials. This Motivates The Subject Of This Book, Which Discusses Phase Transitions Studies In Magnetic Crystals From The Perspective Of An Experimentalist Who Has Done Extensive Work In The Field. The Advantage Is That Many Experimental Techniques Are Described In Sufficient Detail For A Good Understanding Of The Results And Their Comparison To Theory.



This book reviews experimental work related to magnetic phase transitions in single crystals, focusing on major areas that serve as models for classes of critical behavior and related phenomena encountered in magnetic crystals. It describes definitions of the basic critical behaviors; background on experimental techniques used to characterize phase transitions in antiferromagnets; experiments in isotropic and anisotropic antiferromagnets; experiments exhibiting behavior associated with the magnetic percolation threshold concentration, including domains, excitations, and spin-glass-like behaviors; the effects of strong frustrations on uniform antiferromagnetic systems; and a possible example of surface ordering that leads to a new universal critical behavior, particularly how characterizing critical behavior can help to identify the source and nature of magnetic order. The book does not cover phase transitions in bulk crystals. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Preface v
Acknowledgment vii
1 An Introduction to Phase Transitions and Universality
1(14)
2 Universal Critical Behavior from Theory and Simulations
15(8)
3 Background on Experimental Techniques
23(34)
3.1 Thermometry
24(2)
3.2 Specific Heat Techniques
26(6)
3.3 Optical Measurements of Critical Behavior
32(11)
3.3.1 Optical birefringence
33(2)
3.3.2 Specific heat critical behavior via birefringence techniques
35(6)
3.3.3 Faraday rotation
41(2)
3.3.4 Isotropic magnets and the birefringence technique
43(1)
3.4 Capacitance
43(1)
3.5 Susceptibility and Thermal Expansion
44(2)
3.6 Neutron and X-ray Scattering Measurements
46(2)
3.6.1 Elastic scattering
47(1)
3.6.2 Inelastic scattering
48(1)
3.7 The Effect of Concentration Gradients on Critical Behavior Characterizations
48(9)
4 Critical Behavior Experiments on Anisotropic and Isotropic Antiferomagnets
57(104)
4.1 Crystals
58(4)
4.1.1 D = 3 Anisotropic crystals
58(3)
4.1.2 D = 2 Anisotropic crystals
61(1)
4.1.3 D = 3 Isotropic crystals
61(1)
4.2 Phase Diagram Measurements of Anisotropic and Isotropic Antiferromagnets
62(14)
4.2.1 The bicritical and tricritical points in pure and dilute anisotropic antiferromagnets
62(9)
4.2.2 The influence of anisotropy on the transition T/v
71(5)
4.3 Specific Heat Critical Behavior of Pure Ising Antiferromagnets
76(7)
4.3.1 D = 2 Pure Ising specific heat critical behavior
76(1)
4.3.2 D = 3 Pure Ising specific heat critical behavior
77(6)
4.4 The Order Parameter of Pure Ising Antiferromagnets
83(3)
4.4.1 D -- 2 Pure Ising order parameter
83(1)
4.4.2 D = 3 Pure Ising order parameter
84(2)
4.5 Neutron Scattering Critical Line Shapes of Pure Ising Antiferromagnets
86(12)
4.5.1 D = 2 Pure Ising neutron scattering
86(5)
4.5.2 D = 3 Pure Ising neutron scattering
91(7)
4.6 The Random-Exchange Ising Model
98(12)
4.6.1 D = 2 Random-exchange Ising model
99(5)
4.6.2 D = 3 Random-exchange Ising order parameter
104(1)
4.6.3 D = 3 Random-exchange Ising specific heat critical behavior
105(1)
4.6.4 D = 3 Random-exchange neutron scattering
106(2)
4.6.5 D = 3 Random-exchange dynamics
108(1)
4.6.6 D -- 3 Random-exchange susceptibility
109(1)
4.7 The Random-Field Ising Model
110(45)
4.7.1 D = 2 Random-field Ising critical behavior
115(3)
4.7.2 D = 3 Random-field Ising critical behavior
118(8)
4.7.3 D = 3 Random-field dynamics for x > xv
126(6)
4.7.4 Vacancy percolation and the stability of d = 3 antiferromagnetic long-range order
132(4)
4.7.5 D = 3 Random-field order parameter
136(7)
4.7.6 D = 3 Random-field specific heat
143(2)
4.7.7 D = 3 Random-field neutron scattering line shapes
145(10)
4.8 D = 3 XY Specific Heat Critical Behavior
155(1)
4.9 Experiments on Isotropic Magnets
156(5)
4.9.1 Optical birefringence in isotropic antiferromagnets
156(3)
4.9.2 The specific heat critical behavior of isotropic magnets
159(2)
5 Domains, Excitations, and Spin-Glass-Like Behaviors
161(18)
5.1 Domain Structure Dynamics at Low Temperature
161(4)
5.2 The Phase Diagram of Anisotropic Antiferromagnets Above the Magnetic Percolation Threshold Concentration
165(8)
5.3 Excitations Near the Magnetic Percolation Threshold Concentration
173(6)
5.3.1 Fracton excitations in isotropic diluted d = 2 and d = 3 antiferromagnets near the magnetic percolation threshold concentration
174(2)
5.3.2 Excitations in anisotropic d = 2 and d = 3 diluted antiferromagnets near the magnetic percolation threshold concentration
176(3)
6 Experiments on Pure Magnets with Frustration
179(14)
6.1 The XY Stacked Triangular Lattice
180(4)
6.2 Examples of Other Chiral Systems
184(2)
6.2.1 Holmium
184(2)
6.2.2 VF2
186(1)
6.3 Ising Stacked Triangular Lattice
186(7)
7 The Unusual Magnetism of LaCoOa: A Thermally Excited Exchange Interaction and Ordering at Twin Interfaces
193(6)
8 Conclusions and Outstanding Questions
199(8)
8.1 Overall Summary of the Results of the Experiments
199(3)
8.2 Some Open Questions About Equilibrium in the Random-Field Ising Model
202(3)
8.3 Future Work
205(2)
Bibliography 207(20)
Index 227