Muutke küpsiste eelistusi

E-raamat: Main Group Metal Coordination Polymers: Structures and Nanostructures

  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Feb-2017
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119370758
  • Formaat - PDF+DRM
  • Hind: 208,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Feb-2017
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119370758

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Coordination polymer is a general term used to indicate an infinite array composed of metal ions which are bridged by certain ligands among them. This incorporates a wide range of architectures including simple one-dimensional chains with small ligands to large mesoporous frameworks. Generally, the formation process proceeds automatically and, therefore, is called a self-assembly process. In general, the type and topology of the product generated from the self-assembly of inorganic metal nodes and organic spacers depend on the functionality of the ligand and valences and the geometric needs of the metal ions used. In this book the authors explain main group metal coordination polymer in bulk and nano size with some of their application, synthesis method and etc, The properties of these efficient materials are described at length including magnetism (long-range ordering, spin crossover), porosity (gas storage, ion and guest exchange), non-linear optical activity, chiral networks, reactive networks, heterogeneous catalysis, luminescence, multifunctional materials and other properties.
Preface xi
Abbreviations xiii
1 Introduction to Coordination Polymers 1(16)
1.1 Coordination Space
1(1)
1.2 Coordination Polymer
2(3)
1.3 Development of Coordination Polymer
5(2)
1.4 Synthetic Methods
7(3)
1.5 Design of Coordination Polymer
10(3)
References
13(4)
2 Application of Coordination Polymers 17(14)
2.1 Introduction
17(1)
2.2 Gas Storage
17(2)
2.3 Catalysis
19(1)
2.4 Luminescence
20(1)
2.5 Redox Activity
21(1)
2.6 Magnetism
21(4)
2.6.1 Long-Range Magnetic Ordering
22(2)
2.6.1.1 Molecule-Based Magnets
23(1)
2.6.1.2 Single-Chain Magnets
24(1)
2.6.2 Spin Crossover
24(1)
2.7 Acentric and Chiral Networks
25(3)
References
28(3)
3 Zinc(II) Coordination Polymers 31(28)
3.1 Introduction to Zinc(II) Coordination Polymers
31(15)
3.1.1 Coordination Polymers Constructed from Rigid Two-Connecting Ligands
33(5)
3.1.1.1 Rod-Type Ligands
33(3)
3.1.1.2 Angular, Rigid Two-Connectors
36(2)
3.1.2 Coordination Polymers Constructed from Rigid, Trigonal Three-Connectors
38(2)
3.1.3 Coordination Polymers Constructed from Carboxylates, Pyridine Carboxylates and Pyrazine Carboxylates
40(1)
3.1.4 Coordination Polymers Constructed from Secondary Building Blocks (SBUs)
41(2)
3.1.5 Coordination Polymers Constructed from Conformational Flexible Ligands
43(3)
3.1.6 Coordination Polymers Constructed from Phosphate and Phosphonate Ligands
46(1)
3.2 Nano Zinc(II) Coordination Polymers
46(6)
3.3 Conclusion
52(1)
References
52(7)
4 Cadmium(II) Coordination Polymers 59(24)
4.1 Introduction to Cadmium (II) Coordination Polymers
59(11)
4.1.1 One-dimensional Coordination Polymers
60(3)
4.1.2 Two-dimensional Coordination Polymers
63(4)
4.1.3 Three-dimensional Coordination Polymers
67(3)
4.2 Nano Cadmium(II) Coordination Polymers
70(4)
4.3 Conclusion
74(1)
References
75(8)
5 Mercury(II) Coordination Polymers 83(18)
5.1 Introduction Mercury(II) Coordination Polymers
83(10)
5.1.1 One-dimensional Coordination Polymers
84(5)
5.1.2 Two-dimensional Coordination Polymers
89(2)
5.1.3 Three-dimensional Coordination Polymers
91(2)
5.2 Nano Mercury(II) Coordination Polymers
93(4)
5.3 Conclusion
97(1)
References
97(4)
6 Lead(II) Coordination Polymers 101(30)
6.1 Introduction
101(1)
6.2 Mono-donor Coordination Mode
102(4)
6.2.1 Discrete Complexes
102(2)
6.2.2 One-Dimensional Coordination Polymers
104(1)
6.2.3 Two-Dimensional Coordination Polymers
105(1)
6.2.4 Three-Dimensional Coordination Polymers
105(1)
6.3 Bi-donor Coordination Polymers
106(3)
6.3.1 Bridging (µ3-µ1:µ1) Mode
106(3)
6.3.1.1 Discrete Complexes
106(1)
6.3.1.2 One-Dimensional Coordination Polymers
106(1)
6.3.1.3 Two-Dimensional Coordination Polymers
107(1)
6.3.1.4 Three-Dimensional Coordination Polymers
108(1)
6.4 Tri-donor Coordination Polymers
109(2)
6.4.1 Bridging (µ3-µ1:µ2) Mode
109(2)
6.4.1.1 Two-Dimensional Coordination Polymer
109(1)
6.4.1.2 Three-Dimensional Coordination Polymers
110(1)
6.5 Tetra-donor Coordination
111(2)
6.5.1 Chelating, Bridging (µ3-µ1:µ2:µ1) Mode
111(22)
6.5.1.1 One-Dimensional Coordination Polymers
111(1)
6.5.1.2 Two-Dimensional Coordination Polymers
112(1)
6.5.1.3 Three-Dimensional Coordination Polymers
113(1)
6.6 Nano Lead(II) Coordination Polymers
113(9)
6.7 Conclusion
122(1)
References
123(8)
7 Thallium(I) Coordination Polymers 131(22)
7.1 Introduction to Thallium(I) Coordination Polymers
131(2)
7.2 Thallium(I) Coordination Polymers
133(10)
7.2.1 One-Dimensional Coordination Polymers with Secondary Interactions in Tl Coordination Sphere
136(2)
7.2.2 One-Dimensional Coordination Polymers without Secondary Interactions in Tl Coordination Sphere
138(1)
7.2.3 Two-Dimensional Coordination Polymers with Secondary Interactions in Tl Coordination Sphere
138(2)
7.2.4 Two-Dimensional Coordination Polymers without Secondary Interactions in Tl Coordination Sphere
140(1)
7.2.5 Three-Dimensional Coordination Polymers with Secondary Interactions in Tl Coordination Sphere
141(1)
7.2.6 Three-Dimensional Coordination Polymers without Secondary Interactions in Tl Coordination Sphere
142(1)
7.3 Nano Thallium(I) Coordination Polymers
143(4)
7.4 Conclusion
147(1)
References
147(6)
8 Bismuth(III) Coordination Polymers 153(30)
8.1 Introduction to Bismuth Coordination Polymers
153(3)
8.2 Bismuth(III) Complexes with Monoaminopoly Carboxylate
156(4)
8.2.1 Bi(III) Complexes with Iminodiacetate Ligands
156(1)
8.2.2 Bi(III) Complexes with Nitrilotriacetate
156(1)
8.2.3 Bi(III) Complexes with 2-hydroxyethyliminodiacetate
157(2)
8.2.4 Bi(III) complexes with Pyridinedicarboxylate Ligands
159(1)
8.3 Bismuth(III) Complexes with Diaminopolycarboxylate Ligands
160(7)
8.3.1 Bi(III) Complexes with Ethylenediaminetetraacetate
160(6)
8.3.1.1 Protonated Bi(III) Ethylenediaminetetraacetate Complexes
160(1)
8.3.1.2 Bi(III) Ethylenediaminetetraacetate Complexes with Alkali Metal and Ammonium Cations
161(1)
8.3.1.3 Bi(III) Ethylenediaminetetraacetate Complexes with Divalent Metal Cations
162(1)
8.3.1.4 Bi(III) Ethylenediaminetetraacetate Complexes with Protonated Organic Base Cations
163(1)
8.3.1.5 Bi(III) Ethylenediaminetetraacetates with Metal Complex Cations
164(1)
8.3.1.6 Mixed-Ligand Bi(III) Ethylenediaminetetraacetate Complexes
165(1)
8.3.2 Bi(III) Complexes with other than edte- diaminopolycarboxylate Ligands
166(1)
8.4 Bismuth Complexes with Polyaminopolycarboxylate Ligands
167(3)
8.4.1 Bi(III) Complexes with Diethylenetriaminepentaacetate Ligands and its Analogues
167(1)
8.4.2 Bi(III) Complexes with Triethylenetetraaminehexaacetate Ligands
168(1)
8.4.3 Bi(III) Complexes with Macrocyclic Polyaminopolycarboxylate Ligands
169(1)
8.5 Applications
170(1)
8.6 Nano Bismuth(III) Coordination Polymers
170(5)
8.7 Conclusion
175(1)
References
176(7)
9 Main Group Metal Coordination Chemistry 183(22)
9.1 Introduction
183(2)
9.2 Group 12
185(1)
9.3 Group 13
185(6)
9.3.1 Boron
185(1)
9.3.2 Aluminium
186(2)
9.3.3 Gallium
188(2)
9.3.4 Indium
190(1)
9.3.5 Thallium
191(1)
9.4 Group 14
191(4)
9.4.1 Silicon
191(1)
9.4.2 Germanium
192(2)
9.4.3 Tin
194(1)
9.4.4 Lead
195(1)
9.5 Group 15
195(3)
9.5.1 Phosphorus
195(1)
9.5.2 Arsenic
195(1)
9.5.3 Antimony
196(1)
9.5.4 Bismuth
197(1)
9.6 Group 16
198(1)
References
199(6)
10 S-block Coordination Polymers (Groupl) 205(14)
10.1 Introduction
205(1)
10.2 Group 1(Alkali) Metal Coordination Polymers
206(8)
10.2.1 Neutral Oxygen Donor Ligands
206(2)
10.2.2 Anionic Oxygen Donor Ligands
208(3)
10.2.2.1 Alkoxides and Aryloxides
208(1)
10.2.2.2 Carboxylates
208(1)
10.2.2.3 Sulfonates and Nitro-derivatives
209(1)
10.2.2.4 Amino Acids
210(1)
10.2.2.5 Mixed O- and N-donors
210(1)
10.2.3 N-donor Ligands
211(1)
10.2.4 Carbon Donor Ligands
211(2)
10.2.5 Sulfur Donor Ligands
213(1)
10.3 Conclusion
214(1)
References
214(5)
11 S-block Coordination Polymers (Group2) 219(14)
11.1 Introduction
219(1)
11.2 Group 2(Alkaline Earth) Metal Coordination Polymers
220(8)
11.2.1 Neutral Oxygen Donor Ligands
221(1)
11.2.2 Anionic Oxygen Donor Ligands
222(3)
11.2.2.1 Beta-diketonates
222(1)
11.2.2.2 Alkoxides
222(1)
11.2.2.3 Carboxylates
223(1)
11.2.2.4 Phosphonates
224(1)
11.2.2.5 Sulfonates
225(1)
11.2.3 Mixed N- and O-donors
225(1)
11.2.4 N-donor Ligands
225(1)
11.2.5 Carbon Donor Ligands
226(1)
11.2.6 Sulfur Donor Ligands
227(1)
11.3 Conclusion
228(1)
References
229(4)
Glossary 233(6)
Index 239
Ali Morsali is Master in Inorganic Chemistry in Tarbiat Modares University, Tehran, Iran. He obtained his PhD in 2003 in Inorganic Chemistry from the same university. He has published more than 400 articles in international journals as well as 5 patents. He has received numerous national awards. Amongst his research interests are coordination chemistry and metal-organic frameworks.

Lida Hashemi is a postdoctoral researcher at Tarbiat Modarers University, Tehran, Iran. She obtained her PhD in inorganic chemistry from the same university in 2014. She has published 30 articles in international journals and has one patent to her name. Her research interests are coordination chemistry, nanotechnology and metal-organic frameworks.