Muutke küpsiste eelistusi

E-raamat: Make: Calculus

  • Formaat: 328 pages
  • Ilmumisaeg: 09-Aug-2022
  • Kirjastus: Make Community, LLC
  • Keel: eng
  • ISBN-13: 9781680457377
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 23,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 328 pages
  • Ilmumisaeg: 09-Aug-2022
  • Kirjastus: Make Community, LLC
  • Keel: eng
  • ISBN-13: 9781680457377
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

When Isaac Newton developed calculus in the 1600s, he was trying to tie together math and physics in an intuitive, geometrical way. But over time math and physics teaching became heavily weighted toward algebra, and less toward geometrical problem solving. However, many practicing mathematicians and physicists will get their intuition geometrically first and do the algebra later.



Make:Calculus imagines how Newton might have used 3D printed models, construction toys, programming, craft materials, and an Arduino or two to teach calculus concepts in an intuitive way. The book uses as little reliance on algebra as possible while still retaining enough to allow comparison with a traditional curriculum.



This book is not a traditional Calculus I textbook. Rather, it will take the reader on a tour of key concepts in calculus that lend themselves to hands-on projects. This book also defines terms and common symbols for them so that self-learners can learn more on their own.

Preface: Who This Book Is For xiv
What We Assume You Know Already xv
Teaching And Learning With This Book xvi
Developing A Hands-On Calculus Course xvi
3D Printable Models xvi
Chapter Layout xvii
Acknowledgments xviii
About The Authors xix
Chapter 1 The Fundamental Theorem
Building Calculus
1(8)
The Steadily-Increasing Wall
1(5)
The Curved Wall
6(1)
Negative Changes
7(1)
Examples To Try
8(1)
Measuring Real-World Change
9(2)
Instantaneous Slope
9(1)
Looking Ahead
10(1)
Second Fundamental Theorem
11(1)
Chapter Key Points
11(1)
Terminology And Symbols
12(1)
Solutions
12(3)
Chapter 2 Calculus And Its Limits
What Is Calculus?
15(2)
Functions
17(1)
When Our Brick Models Fail
18(5)
Limits
19(4)
Derivatives And Curves
23(3)
Fundamental Theorem Model
23(3)
Dimensional Analysis
26(2)
Equal, But Not The Same
28(1)
Chapter Key Points
29(1)
Terminology And Symbols
29(1)
References
30(3)
Chapter 3 3D Printed Models
Openscad
33(5)
Openscad Workflow
34(2)
Idiosyncrasies Of Openscad
36(2)
Navigating On The Screen
38(1)
Comments
38(1)
The Models
38(6)
Example 1 Changing A Parameter
39(3)
Example 2 Changing A Model With The Customizer
42(1)
Some Models Have Small Parts
43(1)
Downloading The Models: Github
44(1)
3D Printing
44(25)
3D Printing Workflow
45(2)
Materials
47(1)
Printing Tips
47(2)
If You Do Not Have A 3D Printer
49(1)
Chapter Key Points
49(1)
Terminology And Symbols
49(1)
Learning More
50(3)
Chapter 4 Derivatives: The Basics
The Derivative-Integral Model
53(1)
Model Parameters
53(2)
Using Other Lego Bricks
55(1)
Testing Your Derivatives
56(2)
Customizer Workarounds
58(1)
Plotting Curves And Derivatives Not In The Customizer
58(1)
Paper Models
59(1)
Instantaneous Slope
60(1)
Tangent Lines
61(1)
The Mean Value Theorem
62(1)
Examples
63(1)
Derivatives Of Other Powers Of X
63(3)
Sines And Cosines
66(2)
Degrees, Radians, And Pi
68(1)
Exponential Growth
69(2)
Offset Calculation
71(1)
Euler's Number, E
71(1)
Logarithms
72(2)
Exponential Curve Offset
74(2)
Experiments To Try
76(1)
Chapter Key Points
76(1)
Terminology And Symbols
76(1)
References
76(3)
Chapter 5 Using And Calculating Derivatives
Maxima, Minima, Inflection Points
79(6)
Second Derivatives
81(1)
Inflection Points
81(2)
Other Inflection Point Situations
83(1)
Sketching A Curve From Its Derivatives
84(1)
Calculating Derivatives
85(7)
The Chain Rule
85(2)
Derivatives Of Products And Quotients
87(1)
Derivative Of A Product
87(1)
Derivative Of A Quotient
88(1)
L'Hopitals Rule
89(3)
Other Ways Of Writing Derivatives
92(1)
Partial Derivatives
93(4)
Modeling The Surface
94(1)
Modeling The Partial Derivatives
95(1)
Higher-Order Partial Derivatives
96(1)
Chapter Key Points
97(1)
Terminology And Symbols
97(1)
Exercise Answers
98(3)
References
101(2)
Chapter 6 Integrals: The Basics
What Is An Integral?
103(1)
Assembling An Integral
104(3)
The Second Part Of The Fundamental Theorem Of Calculus
107(1)
Computing Integrals
108(5)
Indefinite Integrals Lantiderivatives)
108(4)
Area Under A Curve
112(1)
Area Of A Region
112(1)
Computing An Average
112(1)
The Mean Value Theorem, Reprised
113(1)
3D Printing Integrals
114(1)
Integrals Of Powers Of X
115(2)
Integrals Of Sine And Cosine
117(1)
Integrals Of Exponentials
118(1)
Application: Pid Controllers
119(4)
Experiments To Try
123(1)
Chapter Key Points
123(1)
Terminology And Symbols
124(1)
References
124(4)
Chapter 7 Integrals And Volume
3D Coordinates
128(1)
Volumes Of Revolution
129(7)
Volume Of A Cone
129(1)
Method Of Disks
129(1)
Cavalieri's Principle
130(2)
Calculating With Method Of Disks
132(1)
Volumes Of Other Solids Of Revolution
132(1)
Revolution Models
133(2)
Surfaces Of Revolution
135(1)
Computing Volume Of More General Solids
136(5)
Calculating Volume
136(3)
Checking Our Results
139(1)
Printing This Model
140(1)
Integral Of A Product Or Quotient
141(3)
Integral Of A Quotient
143(1)
Doing The Algebra
143(1)
Printing And Experimenting With The Model
144(1)
Volume Under A Surface
144(2)
Chapter Key Points
146(1)
Terminology And Symbols
147(1)
References
147(2)
Chapter 8 Modeling Exponential Growth And Decay
Ordinary Differential Equations
149(10)
Exponential Growth Or Decay Equation
150(2)
Radioactive Decay
152(2)
Other Exponentials
154(2)
The Logistic Equation
156(1)
Math Of Epidemics
157(2)
Difference Equations
159(5)
Brick Model Reprise
159(1)
Numerical Models Of Derivatives
160(1)
Numerical Models Of Higher Derivatives
161(1)
Error In Numerical Solutions
161(1)
Error, Exponential Equation
161(2)
Error, Logistic Equation
163(1)
Numerical Models Of Integrals
164(1)
Working With Real Data
165(1)
Chapter Key Points
166(1)
Terminology And Symbols
166(1)
References
167(2)
Chapter 9 Modeling Periodic Systems
Going Around In Circles
169(6)
Phase Shifts
170(1)
Sine And Cosine Derivative Relationships
171(2)
Approximating Sine And Cosine
173(2)
Simple Harmonic Motion
175(7)
Second Order Ordinary Differential Equations
177(3)
Spring Experiment
180(1)
Pendulum Experiment
181(1)
Systems Of Differential Equations
182(12)
Reprising The Logistic Equation
182(1)
The Lotka-Volterra Equations
182(1)
Population Behavior Over Time
183(2)
Exploring The Lotka-Volterra Equations
185(1)
Creating The Models
186(1)
Phase Space
187(2)
Phase-Space Model
189(1)
Slope Fields
190(1)
Stable Point
191(2)
Changing Population Ratios
193(1)
Attof Ox Problem
194(1)
Separation Of Variables
194(1)
Chapter Key Points
195(1)
Terminology And Symbols
196(1)
References
196(4)
Chapter 10 Calculus, Circuits, And Code
Calculus Models Of Circuits
200(1)
Simulating Circuits
200(1)
Definitions And Units Of Electrical Components
201(5)
Resistor, Capacitor, And Inductor Circuits
206(8)
Rc Circuits
206(2)
Capacitive Touch Sensing
208(2)
Lc Circuits
210(3)
Rland RLC Circuits
213(1)
Filters
214(1)
Accelerometers And Gyroscopes
214(1)
Accelerometer Mouse
215(10)
Setting Up A Circuit Playground Classic Or Express
216(2)
Arduino Sketch Structure
218(1)
Algorithm For The Accelerometer Mouse
218(2)
Circuit Playground Sketch For Accelerometer Mouse
220(3)
Setting Up The Mouse
223(1)
Testing Out The Mouse
223(2)
Light-Up Pendulum
225(5)
Making The Led Pendulum
225(3)
Led Pendulum Sketch
228(2)
Other Circuit Playground Accelerometer Project Ideas
230(1)
Pid Controllers
231(2)
Temperature Control
231(1)
Ball And Beam
232(1)
Inverted Pendulums
232(1)
Chapter Key Points
233(1)
Terminology And Symbols
233(1)
References
233(2)
Chapter 11 Coordinate Systems And Vectors
Cartesian, Polar, Cylindrical, And Spherical Coordinates
235(9)
Creating The Models
239(2)
Integrals And Derivatives In Polar Coordinates
241(3)
Vector Basics
244(3)
Vector Addition
244(1)
Method Of Shells
245(1)
Multiplying A Vector By A Scalar
246(1)
Complex Numbers
247(3)
The Complex Plane
248(1)
Raising Complex Numbers To A Power
248(2)
Vectors Meet Calculus
250(8)
Vector Multiplication: Dot Product
250(1)
Applying The Dot Product: Work
251(1)
Vector Multiplication: Cross Product
252(2)
Applying The Cross Product: Torque
254(1)
Vector Fields
255(1)
Grad, Div, And Curl
256(2)
Chapter Key Points
258(1)
Terminology And Symbols
259(1)
References
259(2)
Chapter 12 Series
Sequences Vs. Series
261(1)
Series
262(1)
Infinite Series
263(3)
Series Expansions Of Functions
266(2)
Power Series
264(1)
Taylor And Maclaurin Series
265(1)
Maclaurin Series Of Sine, Cosine, And Exponential
266(2)
Modeling Convergence
268(6)
Sinusoid Models
268(4)
Exponential Model
272(1)
Printing The Models
273(1)
Broader Applications
273(2)
Euler's Equation
275(1)
De Moivre's Theorem
276(1)
Proving Euler's Equation
276
Limits And Series
274(4)
Chapter Key Points
278(1)
Terminology And Symbols
278(1)
References
278(3)
Chapter 13 Your Toolbox
Calculating Integrals And Derivatives
281(4)
Integration By Parts
285(2)
Trigonometric Identities
287(2)
Cofunctions
287(1)
Double Angles And Sums Of Angles
288(1)
Squared Functions
288(1)
Trigonometric Substitution
289(2)
Math Modeling In Real Life
291(1)
Chapter Key Points
292(1)
Terminology And Symbols
293(1)
Resources For Further Study
293(1)
Useful Websites And Search Suggestions
293(1)
Calculation Resources
294(1)
Books
294
Joan Horvath is an MIT alumna, a recovering rocket scientist, and educator. She is a cofounder of Nonscriptum LLC. Rich Cameron is an open-source 3D printer hacker who designed the RepRapWallace and Bukito printers. He is a cofounder of Nonscriptum LLC.