Preface: Who This Book Is For |
|
xiv | |
What We Assume You Know Already |
|
xv | |
Teaching And Learning With This Book |
|
xvi | |
Developing A Hands-On Calculus Course |
|
xvi | |
3D Printable Models |
|
xvi | |
Chapter Layout |
|
xvii | |
Acknowledgments |
|
xviii | |
About The Authors |
|
xix | |
|
Chapter 1 The Fundamental Theorem |
|
|
|
|
1 | (8) |
|
The Steadily-Increasing Wall |
|
|
1 | (5) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
Measuring Real-World Change |
|
|
9 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Second Fundamental Theorem |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (3) |
|
Chapter 2 Calculus And Its Limits |
|
|
|
|
15 | (2) |
|
|
17 | (1) |
|
When Our Brick Models Fail |
|
|
18 | (5) |
|
|
19 | (4) |
|
|
23 | (3) |
|
Fundamental Theorem Model |
|
|
23 | (3) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (3) |
|
Chapter 3 3D Printed Models |
|
|
|
|
33 | (5) |
|
|
34 | (2) |
|
Idiosyncrasies Of Openscad |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
38 | (6) |
|
Example 1 Changing A Parameter |
|
|
39 | (3) |
|
Example 2 Changing A Model With The Customizer |
|
|
42 | (1) |
|
Some Models Have Small Parts |
|
|
43 | (1) |
|
Downloading The Models: Github |
|
|
44 | (1) |
|
|
44 | (25) |
|
|
45 | (2) |
|
|
47 | (1) |
|
|
47 | (2) |
|
If You Do Not Have A 3D Printer |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (3) |
|
Chapter 4 Derivatives: The Basics |
|
|
|
The Derivative-Integral Model |
|
|
53 | (1) |
|
|
53 | (2) |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
Plotting Curves And Derivatives Not In The Customizer |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
Derivatives Of Other Powers Of X |
|
|
63 | (3) |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (2) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (3) |
|
Chapter 5 Using And Calculating Derivatives |
|
|
|
Maxima, Minima, Inflection Points |
|
|
79 | (6) |
|
|
81 | (1) |
|
|
81 | (2) |
|
Other Inflection Point Situations |
|
|
83 | (1) |
|
Sketching A Curve From Its Derivatives |
|
|
84 | (1) |
|
|
85 | (7) |
|
|
85 | (2) |
|
Derivatives Of Products And Quotients |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (3) |
|
Other Ways Of Writing Derivatives |
|
|
92 | (1) |
|
|
93 | (4) |
|
|
94 | (1) |
|
Modeling The Partial Derivatives |
|
|
95 | (1) |
|
Higher-Order Partial Derivatives |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (3) |
|
|
101 | (2) |
|
Chapter 6 Integrals: The Basics |
|
|
|
|
103 | (1) |
|
|
104 | (3) |
|
The Second Part Of The Fundamental Theorem Of Calculus |
|
|
107 | (1) |
|
|
108 | (5) |
|
Indefinite Integrals Lantiderivatives) |
|
|
108 | (4) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
The Mean Value Theorem, Reprised |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
Integrals Of Sine And Cosine |
|
|
117 | (1) |
|
Integrals Of Exponentials |
|
|
118 | (1) |
|
Application: Pid Controllers |
|
|
119 | (4) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (4) |
|
Chapter 7 Integrals And Volume |
|
|
|
|
128 | (1) |
|
|
129 | (7) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (2) |
|
Calculating With Method Of Disks |
|
|
132 | (1) |
|
Volumes Of Other Solids Of Revolution |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
Computing Volume Of More General Solids |
|
|
136 | (5) |
|
|
136 | (3) |
|
|
139 | (1) |
|
|
140 | (1) |
|
Integral Of A Product Or Quotient |
|
|
141 | (3) |
|
|
143 | (1) |
|
|
143 | (1) |
|
Printing And Experimenting With The Model |
|
|
144 | (1) |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (2) |
|
Chapter 8 Modeling Exponential Growth And Decay |
|
|
|
Ordinary Differential Equations |
|
|
149 | (10) |
|
Exponential Growth Or Decay Equation |
|
|
150 | (2) |
|
|
152 | (2) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (5) |
|
|
159 | (1) |
|
Numerical Models Of Derivatives |
|
|
160 | (1) |
|
Numerical Models Of Higher Derivatives |
|
|
161 | (1) |
|
Error In Numerical Solutions |
|
|
161 | (1) |
|
Error, Exponential Equation |
|
|
161 | (2) |
|
|
163 | (1) |
|
Numerical Models Of Integrals |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (2) |
|
Chapter 9 Modeling Periodic Systems |
|
|
|
|
169 | (6) |
|
|
170 | (1) |
|
Sine And Cosine Derivative Relationships |
|
|
171 | (2) |
|
Approximating Sine And Cosine |
|
|
173 | (2) |
|
|
175 | (7) |
|
Second Order Ordinary Differential Equations |
|
|
177 | (3) |
|
|
180 | (1) |
|
|
181 | (1) |
|
Systems Of Differential Equations |
|
|
182 | (12) |
|
Reprising The Logistic Equation |
|
|
182 | (1) |
|
The Lotka-Volterra Equations |
|
|
182 | (1) |
|
Population Behavior Over Time |
|
|
183 | (2) |
|
Exploring The Lotka-Volterra Equations |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
Changing Population Ratios |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (4) |
|
Chapter 10 Calculus, Circuits, And Code |
|
|
|
Calculus Models Of Circuits |
|
|
200 | (1) |
|
|
200 | (1) |
|
Definitions And Units Of Electrical Components |
|
|
201 | (5) |
|
Resistor, Capacitor, And Inductor Circuits |
|
|
206 | (8) |
|
|
206 | (2) |
|
|
208 | (2) |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
214 | (1) |
|
Accelerometers And Gyroscopes |
|
|
214 | (1) |
|
|
215 | (10) |
|
Setting Up A Circuit Playground Classic Or Express |
|
|
216 | (2) |
|
|
218 | (1) |
|
Algorithm For The Accelerometer Mouse |
|
|
218 | (2) |
|
Circuit Playground Sketch For Accelerometer Mouse |
|
|
220 | (3) |
|
|
223 | (1) |
|
|
223 | (2) |
|
|
225 | (5) |
|
|
225 | (3) |
|
|
228 | (2) |
|
Other Circuit Playground Accelerometer Project Ideas |
|
|
230 | (1) |
|
|
231 | (2) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
233 | (2) |
|
Chapter 11 Coordinate Systems And Vectors |
|
|
|
Cartesian, Polar, Cylindrical, And Spherical Coordinates |
|
|
235 | (9) |
|
|
239 | (2) |
|
Integrals And Derivatives In Polar Coordinates |
|
|
241 | (3) |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
245 | (1) |
|
Multiplying A Vector By A Scalar |
|
|
246 | (1) |
|
|
247 | (3) |
|
|
248 | (1) |
|
Raising Complex Numbers To A Power |
|
|
248 | (2) |
|
|
250 | (8) |
|
Vector Multiplication: Dot Product |
|
|
250 | (1) |
|
Applying The Dot Product: Work |
|
|
251 | (1) |
|
Vector Multiplication: Cross Product |
|
|
252 | (2) |
|
Applying The Cross Product: Torque |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (2) |
|
|
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (3) |
|
Series Expansions Of Functions |
|
|
266 | (2) |
|
|
264 | (1) |
|
Taylor And Maclaurin Series |
|
|
265 | (1) |
|
Maclaurin Series Of Sine, Cosine, And Exponential |
|
|
266 | (2) |
|
|
268 | (6) |
|
|
268 | (4) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
273 | (2) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | |
|
|
274 | (4) |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
278 | (3) |
|
|
|
Calculating Integrals And Derivatives |
|
|
281 | (4) |
|
|
285 | (2) |
|
|
287 | (2) |
|
|
287 | (1) |
|
Double Angles And Sums Of Angles |
|
|
288 | (1) |
|
|
288 | (1) |
|
Trigonometric Substitution |
|
|
289 | (2) |
|
Math Modeling In Real Life |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
Resources For Further Study |
|
|
293 | (1) |
|
Useful Websites And Search Suggestions |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | |