Muutke küpsiste eelistusi

E-raamat: Man-Machine Speech Communication: 18th National Conference, NCMMSC 2023, Suzhou, China, December 8-10, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 18th National Conference on Man-Machine Speech Communication, NCMMSC 2023, held in Suzhou, China, during December 8–11, 2023.

The  20 full papers and 11 short papers included in this book were carefully reviewed and selected from 117 submissions. They deal with topics such as speech recognition, synthesis, enhancement and coding, audio/music/singing synthesis, avatar, speaker recognition and verification, human–computer dialogue systems, large language models as well as phonetic and linguistic topics such as speech prosody analysis, pathological speech analysis, experimental phonetics, acoustic scene classification.
Ultra-Low Complexity Residue Echo and Noise Suppression Based on
Recurrent Neural Network.- Semi-End-to-End Nested Named Entity Recognition
from Speech.- A Lightweight Music Source Separation Model with Graph
Convolution Network.- Joint time-domain and frequency-domain progressive
learning for single-channel speech enhancement and recognition.- A Study on
Domain Adaptation for Audio-visual Speech Enhancement.- APNet2: High-quality
and High-efficiency Neural Vocoder with Direct Prediction of Amplitude and
Phase Spectra.- Within- and Between-Class Sample Interpolation Based
Supervised Metric Learning for Speaker Verification.- Joint speech and noise
estimation using SNR-adaptive target learning for deep-learning-based speech
enhancement.- Data Augmentation By Finite Element Analysis for Enhanced
Machine Anomalous Sound Detection.- A Fast Sampling Method in Diffusion-based
Dance Generation Models.- End-to-end Streaming Customizable KeywordSpotting
based on text-adaptive neural search.- The Production of Successive Addition
Boundary Tone in Mandarin Preschoolers.- Emotional Support Dialog System
Through Recursive Interactions Among Large Language Models.- Task-Adaptive
Generative Adversarial Network based Speech Dereverberation for Robust Speech
Recognition.- Real-time Automotive Engine Sound Simulation with Deep Neural
Network.- A Framework Combining Separate and Joint Training for Neural
Vocoder-Based Monaural Speech Enhancement.- Accent-VITS: accent transfer for
end-to-end TTS.- Multi-branch Network with Cross-Domain Feature Fusion for
Anomalous Sound Detection.- A Packet Loss Concealment Method Based on the
Demucs Network Structure.- Improving Speech Perceptual Quality and
Intelligibility through Sub-band Temporal Envelope Characteristics.- Adaptive
Deep Graph Convolutional Network For Dialogical Speech Emotion
Recognition.- Iterative Noisy-target Approach: Speech Enhancement without
Clean Speech.- Joint Training or Not: An Exploration of Pre-trained Speech
Models in Audio-Visual Speaker Diarization.- Zero-shot Singing Voice
Conversion Method Based on Timbre Space Modeling and Excitation Signal
Control.- A Comparative Study of Pre-trained Audio and Speech Models for
Heart Sound Detection.- CAM-GUI: A Conversational Assistant on Mobile GUI.- A
Pilot Study on the Prosodic Factors Influencing Voice Attractiveness of AI
Speech.- The DKU-MSXF Diarization System for the VoxCeleb Speaker Recognition
Challenge 2023.- Chinese EFL Learners Auditory and Visual Perception of
English Statement and Question Intonation: The Effect of Stress.- An Improved
System for Partially Fake Audio Detection Using Pre-trained
Model.- Leveraging Synthetic Speech for CIF-based Customized Keyword Spotting.