Muutke küpsiste eelistusi

E-raamat: Manifolds And Local Structures: A General Theory

(Universita Di Genova, Italy)
  • Formaat: 376 pages
  • Ilmumisaeg: 10-Feb-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811234019
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 105,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 376 pages
  • Ilmumisaeg: 10-Feb-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811234019
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Local structures, like differentiable manifolds, fibre bundles, vector bundles and foliations, can be obtained by gluing together a family of suitable 'elementary spaces', by means of partial homeomorphisms that fix the gluing conditions and form a sortof 'intrinsic atlas', instead of the more usual system of charts living in an external framework. An 'intrinsic manifold' is defined here as such an atlas, in a suitable category of elementary spaces: open euclidean spaces, or trivial bundles, or trivialvector bundles, and so on. This uniform approach allows us to move from one basis to another: for instance, the elementary tangent bundle of an open Euclidean space is automatically extended to the tangent bundle of any differentiable manifold. The same holds for tensor calculus. Technically, the goal of this book is to treat these structures as 'symmetric enriched categories' over a suitable basis, generally an ordered category of partial mappings. This approach to gluing structures is related to Ehresmann's one, based on inductive pseudogroups and inductive categories. A second source was the theory of enriched categories and Lawvere's unusual view of interesting mathematical structures as categories enriched over a suitable basis"--

Local structures, like differentiable manifolds, fibre bundles, vector bundles and foliations, can be obtained by gluing together a family of suitable 'elementary spaces', by means of partial homeomorphisms that fix the gluing conditions and form a sort of 'intrinsic atlas', instead of the more usual system of charts living in an external framework. An 'intrinsic manifold' is defined here as such an atlas, in a suitable category of elementary spaces: open euclidean spaces, or trivial bundles, or trivial vector bundles, and so on. This uniform approach allows us to move from one basis to another: for instance, the elementary tangent bundle of an open Euclidean space is automatically extended to the tangent bundle of any differentiable manifold. The same holds for tensor calculus. Technically, the goal of this book is to treat these structures as 'symmetric enriched categories' over a suitable basis, generally an ordered category of partial mappings. This approach to gluing structures is related to Ehresmann's one, based on inductive pseudogroups and inductive categories. A second source was the theory of enriched categories and Lawvere's unusual view of interesting mathematical structures as categories enriched over a suitable basis.

Preface vii
Introduction 1(11)
0.1 Classical manifolds by an external atlas
1(2)
0.2 Intrinsic manifolds on ordered categories
3(1)
0.3 Morphisms of manifolds as linked profunctors
4(1)
0.4 The interest of an intrinsic approach
5(1)
0.5 An outline
6(1)
0.6 Manifolds by Ehresmann's pseudogroups
7(1)
0.7 Prerequisites, notation and conventions
8(1)
0.8 Sources and outgrowth
9(1)
0.9 Acknowledgements
10(2)
1 Order, semigroups and categories
12(61)
1.1 Preordered sets, lattices and semigroups
12(9)
1.2 Regular and inverse semigroups
21(5)
1.3 The involution and order of an inverse semigroup
26(6)
1.4 Categories
32(10)
1.5 Functors and concreteness
42(6)
1.6 Natural transformations and equivalences
48(7)
1.7 Basic limits and colimits
55(8)
1.8 Adjoint functors and Galois connections
63(10)
2 Inverse categories and topological background
73(48)
2.1 Ordered categories, partial mappings and topology
73(7)
2.2 Involutive categories and categories of relations
80(7)
2.3 Semigroups, categories, and inverse categories
87(6)
2.4 The canonical order of an inverse category
93(4)
2.5 Euclidean spheres and topological groups
97(9)
2.6 Complements on topology
106(4)
2.7 *The transfer functor of inverse categories
110(5)
2.8 *Global orders and Ehresmann's pseudogroups
115(6)
3 Cohesive categories and manifolds
121(61)
3.1 Introducing cohesive structures
121(5)
3.2 Cohesive categories
126(7)
3.3 Prj-cohesive and e-cohesive categories
133(9)
3.4 Inverse categories and cohesion
142(5)
3.5 Manifolds and gluing completion for inverse categories
147(10)
3.6 Manifolds and gluing completion for prj-categories
157(9)
3.7 The cohesive completion
166(5)
3.8 Adequate prj-cohesive categories
171(5)
3.9 Proof of the gluing completion theorems
176(6)
4 From topological manifolds to fibre bundles
182(53)
4.1 Differentiable manifolds and simplicial complexes
182(7)
4.2 Fibre bundles, vector bundles and covering maps
189(8)
4.3 Preordered spaces and directed spaces
197(10)
4.4 Locally cartesian ordered manifolds
207(9)
4.5 Locally preordered spaces
216(5)
4.6 Embedded manifolds and inverse quantaloids
221(7)
4.7 G-bundles and principal bundles
228(4)
4.8 *Fundamental groupoids of smooth manifolds
232(3)
5 Complements on category theory
235(43)
5.1 Monomorphisms and partial morphisms
235(8)
5.2 Limits and colimits
243(7)
5.3 Tensor product of modules and Horn
250(8)
5.4 Monoidal categories and closedness
258(6)
5.5 Enrichment on a monoidal category
264(5)
5.6 "Two-dimensional categories and internal categories
269(9)
6 Enriched categories and Cauchy completion
278(43)
6.1 Ordering and upper bounds
278(4)
6.2 Enrichment on a quantale: metrics and preorders
282(8)
6.3 Enrichment on a quantaloid
290(7)
6.4 Cauchy completion on a quantaloid
297(8)
6.5 *Cauchy completion on a symmetric monoidal category
305(4)
6.6 *Cohesive categories as enriched categories
309(3)
6.7 *Cohesive categories and Ehresmann's global orders
312(9)
7 Solutions of the exercises
321(30)
7.1 Exercises of
Chapter 1
321(7)
7.2 Exercises of
Chapter 2
328(6)
7.3 Exercises of
Chapter 3
334(4)
7.4 Exercises of
Chapter 4
338(7)
7.5 Exercises of
Chapter 5
345(4)
7.6 Exercises of
Chapter 6
349(2)
References 351(5)
Index 356