Muutke küpsiste eelistusi

E-raamat: Many-Body Theory of Condensed Matter Systems: An Introductory Course

(University of Western Ontario), (University of Western Ontario)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108856034
  • Formaat - PDF+DRM
  • Hind: 65,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108856034

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"In this primer to the many-body theory of condensed-matter systems, the authors introduce the subject to the non-specialist in a broad, concise, and up-to-date manner. A wide range of topics are covered including the second quantization of operators, coherent states, quantum-mechanical Green's functions, linear response theory, and Feynman diagrammatic perturbation theory. Material is also incorporated from quantum optics, low-dimensional systems such as graphene, and localized excitations in systems with boundaries as in nanoscale materials. Over 100 problems are included at the end of chapters, which are used both to consolidate concepts and to introduce new material. This book is suitable as a teaching tool for graduate courses and is ideal for non-specialist students and researchers working in physics, materials science, chemistry, or applied mathematics who want to use the tools of many-body theory"--

Arvustused

'This textbook for physics graduate courses introduces some of the mathematical methods used in applying the many-body theory of condensed matter. Researchers in other disciplines who desire to apply these methods in materials science, chemistry, or applied mathematics will appreciate ' F. Potter, Choice

Muu info

For non-specialist students and researchers, this is a broad and concise introduction to the many-body theory of condensed-matter systems.
Preface xi
List of Abbreviations
xiii
1 Introduction to Second Quantization
1(33)
1.1 Creation and Annihilation Operators
3(6)
1.2 Second Quantization for Bosons and Fermions
9(3)
1.3 Coherent States
12(4)
1.4 Model Hamiltonians for Interacting Boson or Fermion Particles
16(6)
1.5 Hamiltonian Diagonalization Methods
22(12)
Problems
31(3)
2 Time Evolution and Equations of Motion
34(33)
2.1 Operator Methods in Different Quantum Pictures
35(6)
2.2 Forced Quantum Harmonic Oscillator
41(3)
2.3 Time Evolution of Coherent States
44(2)
2.4 Lattice Dynamics for Phonons
46(5)
2.5 The Interacting Boson Gas Revisited
51(1)
2.6 Exchange and Dipole-Exchange Spin Waves
52(2)
2.7 Electronic Bands of Graphene
54(3)
2.8 Density Fluctuations in an Electron Gas
57(6)
Problems
63(4)
3 Formal Properties of Green's Functions
67(27)
3.1 Real-Time Green's Functions
68(4)
3.2 Time Correlation Functions
72(2)
3.3 Spectral Representations
74(3)
3.4 Real and Imaginary Parts of Green's Functions
77(5)
3.5 Imaginary-Time Green's Functions
82(6)
3.6 Methods of Evaluating Green's Functions
88(3)
Problems
91(3)
4 Exact Methods for Green's Function
94(21)
4.1 Noninteracting Gas of Bosons or Fermions
94(6)
4.2 Green's Functions for a Graphene Sheet
100(1)
4.3 Interaction of Light with Atoms
101(5)
4.4 Dipole-Exchange Ferromagnet
106(2)
4.5 Paramagnet with Crystal-Field Anisotropy
108(4)
Problems
112(3)
5 Green's Functions Using Decoupling Methods
115(33)
5.1 Hartree--Fock Theory for an Interacting Fermion Gas
115(5)
5.2 Random Phase Approximation for Ferromagnets
120(6)
5.3 Random Phase Approximation for Antiferromagnets
126(4)
5.4 Electron Correlations and the Hubbard Model
130(5)
5.5 The Anderson Model for Localized States in Metals
135(6)
5.6 Microscopic Theory of Superconductivity
141(5)
Problems
146(2)
6 Linear Response Theory and Green's Functions
148(28)
6.1 The Density Matrix
149(2)
6.2 Linear Response Theory
151(2)
6.3 Response Functions and Green's Functions
153(3)
6.4 Response Functions and Applications
156(4)
6.5 Phonons in an Infinite Elastic Medium
160(3)
6.6 Application to the Kubo Formalism
163(6)
6.7 Inelastic Light Scattering
169(4)
Problems
173(3)
7 Green's Functions for Localized Excitations
176(26)
7.1 Acoustic Phonons at Surfaces
176(3)
7.2 Surface Spin Waves in Ferromagnets
179(5)
7.3 Edge Modes in Graphene Nanoribbons
184(6)
7.4 Photonic Bands in Multilayer Superlattices
190(5)
7.5 Impurity Modes in Ferromagnets
195(4)
Problems
199(3)
8 Diagrammatic Perturbation Methods
202(31)
8.1 The Grand Partition Function
203(3)
8.2 Wick's Theorem
206(6)
8.3 The Unperturbed Imaginary-Time Green's Function
212(1)
8.4 Diagrammatic Representation
213(11)
8.5 The Interacting Imaginary-Time Green's Function
224(6)
Problems
230(3)
9 Applications of Diagrammatic Methods
233(32)
9.1 Hartree--Fock Theory for Fermions
233(4)
9.2 Density Fluctuations in an Electron Gas
237(2)
9.3 Electron--Phonon Interactions
239(5)
9.4 Boson Expansion Methods for Spin Waves
244(3)
9.5 Scattering by Static Impurities
247(9)
9.6 Diagrammatic Techniques for Spin Operators
256(7)
Problems
263(2)
References 265(6)
Index 271
Michael G. Cottam is a Professor of Physics in the Department of Physics & Astronomy at the University of Western Ontario. He has previously been the Chair of the Department of Physics & Astronomy, the Director of Western University's Institute for Nanomaterials Science, and the Associate Dean in the Faculty of Science. Zahra Haghshenasfard holds PhDs from both the University of Isfahan in quantum optics and nonlinear processes, and from the University of Western Ontario in nonlinear processes for the magnetization dynamics in nanowires.