Muutke küpsiste eelistusi

E-raamat: Maschinelles Lernen mit Python und R für Dummies

  • Formaat: EPUB+DRM
  • Sari: Für Dummies
  • Ilmumisaeg: 21-Aug-2017
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: ger
  • ISBN-13: 9783527809011
  • Formaat - EPUB+DRM
  • Hind: 27,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Für Dummies
  • Ilmumisaeg: 21-Aug-2017
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: ger
  • ISBN-13: 9783527809011

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Maschinelles Lernen ist aufregend: Mit schnellen Prozessoren und großen Speichern können Computer aus Erfahrungen lernen, künstliche Intelligenz kommt wieder in Reichweite. Mit diesem Buch verstehen Sie, was maschinelles Lernen bedeutet, für welche Probleme es sich eignet, welche neuen Herangehensweisen damit möglich sind und wie Sie mit Python, R und speziellen Werkzeugen maschinelles Lernen implementieren. Sie brauchen dafür keine jahrelange Erfahrung als Programmierer und kein Mathematikstudium. Die praktische Anwendung maschinellen Lernens steht in diesem Buch im Vordergrund. Spielen Sie mit den Tools und haben Sie Spaß dabei! Lernen Sie Fakten und Mythen zum maschinellen Lernen zu unterscheiden.

John Paul Mueller is a technical editor and consultant. He has authored or coauthored 58 books and more than 200 articles on everything from database management to artificial intelligence.
Über die Autoren 13

Einführung 25

Teil I: Einführung in das maschinelle Lernen 29

Kapitel 1: Künstliche Intelligenz in Fiktion und Realität 31

Kapitel 2: Lernen im Zeitalter von Big Data 43

Kapitel 3: Ein Ausblick auf die Zukunft 53

Teil II: Einrichtung Ihrer Programmierumgebung 63

Kapitel 4: Installation einer R-Distribution 65

Kapitel 5: Programmierung mit R und RStudio 83

Kapitel 6: Installation einer Python-Distribution 107

Kapitel 7: Programmierung mit Python und Anaconda 127

Kapitel 8: Weitere Softwareprogramme für maschinelles Lernen 151

Teil III: Mathematische Grundlagen                                 159

Kapitel 9: Mathematische Grundlagen des maschinellen Lernens  161

Kapitel 10: Fehlerfunktionen und ihre Minimierung 179

Kapitel 11: Validierung von maschinellem Lernen 191

Kapitel 12: Einfache Lerner 209

Teil IV: Aufbereitung und Verwendung von Daten

zum Lernen 225

Kapitel 13: Vorverarbeitung von Daten  227

Kapitel 14: Ausnutzung von Ähnlichkeiten in Daten 245

Kapitel 15: Einfache Anwendung von linearen Modellen 265

Kapitel 16: Komplexere Lernverfahren und neuronale Netze  287

Kapitel 17: Support Vector Machines und Kernel-Funktionen  303

Kapitel 18: Kombination von Lernalgorithmen in Ensembles 321

Teil V: Praktische Anwendung von maschinellem Lernen 337

Kapitel 19: Klassifikation von Bildern  339

Kapitel 20: Bewertung von Meinungen und Stimmungslagen 353

Kapitel 21: Produkt- und Filmempfehlungen 373

Teil VI: Der Top-Ten-Teil  387

Kapitel 22: Zehn wichtige Pakete für maschinelles Lernen 389

Kapitel 23: Zehn Methoden zur Verbesserung Ihrer maschinellen Lernmodelle
395

Stichwortverzeichnis 403
John Mueller ist freier Autor und technischer Redakteur. Er hat das Bücherschreiben im Blut. Bis heute hat er 99 Bücher und mehr als 600 Artikel geschrieben. Sein Themenspektrum reicht von Netzwerken zu Datensicherheit und von Datenbankmanagement zu Programmierung. Luca Massaron ist Data Scientist und geübt darin, Big Data in Smart Data zu überführen. Er nutzt am liebsten die ganz einfachen, aber dennoch effektiven Techniken des Data Mining und des maschinellen Lernens.