Muutke küpsiste eelistusi

E-raamat: Material Geometry: Groupoids In Continuum Mechanics

(Univ De Alcala (Uah), Spain), (Univ Of Calgary, Canada), (Consejo Superior De Investigaciones Cientificas, Spain)
  • Formaat: 228 pages
  • Ilmumisaeg: 23-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811232565
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 70,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 228 pages
  • Ilmumisaeg: 23-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811232565
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This monograph is the first in which the theory of groupoids and algebroids is applied to the study of the properties of uniformity and homogeneity of continuous media. It is a further step in the application of differential geometry to the mechanics ofcontinua, initiated years ago with the introduction of the theory of G-structures, in which the group G denotes the group of material symmetries, to study smoothly uniform materials. The new approach presented in this book goes much further by being muchmore general. It is not a generalization per se, but rather a natural way of considering the algebraic-geometric structure induced by the so-called material isomorphisms. This approach has allowed us to encompass non-uniform material and discover new properties of uniformity and homogeneity that certain material bodies can possess, thus opening a new area in the discipline"--

This monograph is the first in which the theory of groupoids and algebroids is applied to the study of the properties of uniformity and homogeneity of continuous media. It is a further step in the application of differential geometry to the mechanics of continua, initiated years ago with the introduction of the theory of G-structures, in which the group G denotes the group of material symmetries, to study smoothly uniform materials. The new approach presented in this book goes much further by being much more general. It is not a generalization per se, but rather a natural way of considering the algebraic-geometric structure induced by the so-called material isomorphisms. This approach has allowed us to encompass non-uniform material and discover new properties of uniformity and homogeneity that certain material bodies can possess, thus opening a new area in the discipline.

Preface ix
About the Authors xi
1 Introduction
1(14)
Part I Fundamentals
15(76)
2 Continuum Mechanics: Elastic Simple Bodies
17(16)
3 Groupoids
33(18)
4 Algebroids
51(40)
Part II Material Groupoid
91(68)
5 Material Algebroid
93(26)
5.1 Integrability
93(13)
5.2 Homogeneity with G-structures
106(13)
6 Characteristic Distributions and Material Bodies
119(40)
6.1 Characteristic Distribution
119(18)
6.2 Uniformity and Homogeneity
137(9)
6.3 Examples
146(13)
Appendix A Foliations and Distributions
159(12)
Appendix B Covariant Derivatives
171(12)
Appendix C Principal Bundles and Connections
183(16)
C.1 Principal Bundles
183(4)
C.2 G-structures
187(2)
C.3 Connections
189(10)
Bibliography 199(8)
Index 207