Muutke küpsiste eelistusi

E-raamat: Materials Discovery and Design: By Means of Data Science and Optimal Learning

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample.  The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader. 

1 Dimensions, Bits, and Wows in Accelerating Materials Discovery 1(14)
Lay R. Varshney
1.1 Introduction
1(2)
1.2 Creativity and Discovery
3(2)
1.3 Discovering Dimensions
5(1)
1.4 Infotaxis
6(2)
1.5 Pursuit of Bayesian Surprise
8(3)
1.6 Conclusion
11(1)
References
11(4)
2 Is Automated Materials Design and Discovery Possible? 15(44)
Michael McKerns
2.1 Model Determination in Materials Science
16(1)
2.1.1 The Status Quo
16(1)
2.1.2 The Goal
16(1)
2.2 Identification of the Research and Issues
17(4)
2.2.1 Reducing the Degrees of Freedom in Model Determination
17(2)
2.2.2 OUQ and mystic
19(2)
2.3 Introduction to Uncertainty Quantification
21(3)
2.3.1 The UQ Problem
21(3)
2.4 Generalizations and Comparisons
24(3)
2.4.1 Prediction, Extrapolation, Verification and Validation
24(1)
2.4.2 Comparisons with Other UQ Methods
25(2)
2.5 Optimal Uncertainty Quantification
27(4)
2.5.1 First Description
28(3)
2.6 The Optimal UQ Problem
31(5)
2.6.1 From Theory to Computation
31(5)
2.7 Optimal Design
36(4)
2.7.1 The Optimal UQ Loop
36(4)
2.8 Model-Form Uncertainty
40(2)
2.8.1 Optimal UQ and Model Error
40(1)
2.8.2 Game-Theoretic Formulation and Model Error
41(1)
2.9 Design and Decision-Making Under Uncertainty
42(2)
2.9.1 Optimal UQ for Vulnerability Identification
42(1)
2.9.2 Data Collection for Design Optimization
43(1)
2.10 A Software Framework for Optimization and UQ in Reduced Search Space
44(9)
2.10.1 Optimization and UQ
44(1)
2.10.2 A Highly-Configurable Optimization Framework
45(1)
2.10.3 Reduction of Search Space
46(3)
2.10.4 New Massively-Parallel Optimization Algorithms
49(1)
2.10.5 Probability and Uncertainty Tooklit
50(3)
2.11 Scalability
53(1)
2.11.1 Scalability Through Asynchronous Parallel Computing
53(1)
References
54(5)
3 Importance of Feature Selection in Machine Learning and Adaptive Design for Materials 59(22)
Prasanna V. Balachandran
Dezhen Xue
James Theiler
John Hogden
James E. Gubernatis
Turab Lookman
3.1 Introduction
60(2)
3.2 Computational Details
62(2)
3.2.1 Density Functional Theory
62(1)
3.2.2 Machine Learning
63(1)
3.2.3 Design
63(1)
3.3 Results
64(9)
3.4 Discussion
73(3)
3.5 Summary
76(1)
References
77(4)
4 Bayesian Approaches to Uncertainty Quantification and Structure Refinement from X-Ray Diffraction 81(22)
Alisa R. Paterson
Brian J. Reich
Ralph C. Smith
Alyson G. Wilson
Jacob L. Jones
4.1 Introduction
81(2)
4.2 Classical Methods of Structure Refinement
83(4)
4.2.1 Classical Single Peak Fitting
83(1)
4.2.2 The Rietveld Method
84(2)
4.2.3 Frequentist Inference and Its Limitations
86(1)
4.3 Bayesian Inference
87(3)
4.3.1 Sampling Algorithms
89(1)
4.4 Application of Bayesian Inference to Single Peak Fitting: A Case Study in Ferroelectric Materials
90(4)
4.4.1 Methods
92(1)
4.4.2 Prediction Intervals
93(1)
4.5 Application of Bayesian Inference to Full Pattern Crystallographic Structure Refinement: A Case Study
94(6)
4.5.1 Data Collection and the Rietveld Analysis
95(1)
4.5.2 Importance of Modelling the Variance and Correlation of Residuals
96(1)
4.5.3 Bayesian Analysis of the NIST Silicon Standard
97(1)
4.5.4 Comparison of the Structure Refinement Approaches
97(2)
4.5.5 Programs
99(1)
4.6 Conclusion
100(1)
References
101(2)
5 Deep Data Analytics in Structural and Functional Imaging of Nanoscale Materials 103(26)
Maxim Ziatdinov
Artem Maksov
Sergei V. Kalinin
5.1 Introduction
104(2)
5.2 Case Study
1. Interplay Between Different Structural Order Parameters in Molecular Self-assembly
106(9)
5.2.1 Model System and Problem Overview
106(1)
5.2.2 How to Find Positions of All Molecules in the Image?
107(1)
5.2.3 Identifying Molecular Structural Degrees of Freedom via Computer Vision
108(4)
5.2.4 Application to Real Experimental Data: From Imaging to Physics and Chemistry
112(3)
5.3 Case Study
2. Role of Lattice Strain in Formation of Electron Scattering Patterns in Graphene
115(6)
5.3.1 Model System and Problem Overview
115(1)
5.3.2 How to Extract Structural and Electronic Degrees of Freedom Directly from an Image?
116(1)
5.3.3 Direct Data Mining of Structure and Electronic Degrees of Freedom in Graphene
117(4)
5.4 Case Study
3. Correlative Analysis in Multi-mode Imaging of Strongly Correlated Electron Systems
121(5)
5.4.1 Model System and Problem Overview
121(1)
5.4.2 How to Obtain Physically Meaningful Endmembers from Hyperspectral Tunneling Conductance Data?
122(4)
5.5 Overall Conclusion and Outlook
126(1)
References
127(2)
6 Data Challenges of In Situ X-Ray Tomography for Materials Discovery and Characterization 129(38)
Brian M. Patterson
Nikolaus L. Cordes
Kevin Henderson
Xianghui Xiao
Nikhilesh Chawla
6.1 Introduction
130(3)
6.2 In Situ Techniques
133(3)
6.3 Experimental Rates
136(5)
6.4 Experimental and Image Acquisition
141(4)
6.5 Reconstruction
145(1)
6.6 Visualization
146(2)
6.7 Segmentation
148(3)
6.8 Modeling
151(1)
6.9 In Situ Data
152(1)
6.10 Analyze and Advanced Processing
153(3)
6.11 Conclusions
156(2)
References
158(9)
7 Overview of High-Energy X-Ray Diffraction Microscopy (HEDM) for Mesoscale Material Characterization in Three-Dimensions 167(36)
Reeju Pokharel
7.1 Introduction
167(4)
7.1.1 The Mesoscale
168(1)
7.1.2 Imaging Techniques
169(2)
7.2 Brief Background on Scattering Physics
171(7)
7.2.1 Scattering by an Atom
172(2)
7.2.2 Crystallographic Planes
174(1)
7.2.3 Diffraction by a Small Crystal
175(2)
7.2.4 Electron Density
177(1)
7.3 High-Energy X-Ray Diffraction Microscopy (HEDM)
178(3)
7.3.1 Experimental Setup
178(1)
7.3.2 Data Analysis
179(2)
7.4 Microstructure Representation
181(2)
7.5 Example Applications
183(11)
7.5.1 Tracking Plastic Deformation in Polycrystalline Copper Using Nf-HEDM
183(3)
7.5.2 Combined nf- and ff-HEDM for Tracking Inter- granular Stress in Titanium Alloy
186(1)
7.5.3 Tracking Lattice Rotation Change in Interstitial-Free (IF) Steel Using HEDM
187(2)
7.5.4 Grain-Scale Residual Strain (Stress) Determination in Ti-7Al Using HEDM
189(1)
7.5.5 In-Situ ff-HEDM Characterization of Stress-Induced Phase Transformation in Nickel-Titanium Shape Memory Alloys (SMA)
190(1)
7.5.6 HEDM Application to Nuclear Fuels
191(1)
7.5.7 Utilizing HEDM to Characterize Additively Manufactured 316L Stainless Steel
192(2)
7.6 Conclusions and Perspectives
194(4)
7.6.1 Establishing Processing-Structure- Property- Performance Relationships
196(2)
References
198(5)
8 Bragg Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources 203(14)
Edwin Fohtung
Dmitry Karpov
Tilo Baumbach
8.1 Introduction
204(7)
8.2 BCDI Methods at Light Sources
211(1)
8.3 Big Data Challenges in BCDI
212(2)
8.4 Conclusions
214(1)
References
214(3)
9 Automatic Tuning and Control for Advanced Light Sources 217(36)
Alexander Scheinker
9.1 Introduction
218(14)
9.1.1 Beam Dynamics
220(2)
9.1.2 RF Acceleration
222(1)
9.1.3 Bunch Compression
223(1)
9.1.4 RF Systems
224(2)
9.1.5 Need for Feedback Control
226(1)
9.1.6 Standart Proportional Integral (PI) Control for RF Cavity
227(5)
9.2 Advanced Control and Tuning Topics
232(1)
9.3 Introduction to Extremum Seeking Control
233(16)
9.3.1 Physical Motivation
234(2)
9.3.2 General ES Scheme
236(2)
9.3.3 ES for RF Beam Loading Compensation
238(2)
9.3.4 ES for Magnet Tuning
240(2)
9.3.5 ES for Electron Bunch Longitudinal Phase Space Prediction
242(4)
9.3.6 ES for Phase Space Tuning
246(3)
9.4 Conclusions
249(1)
References
249(4)
Index 253