Muutke küpsiste eelistusi

E-raamat: Materials and Processes for CO2 Capture, Conversion, and Sequestration

Edited by (Boise State University, ID), Edited by (Catholic University of America in Washington, DC), Edited by (University of South Carolina, SC), Edited by (National Institute of Standards and Technology)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2018
  • Kirjastus: Wiley-American Ceramic Society
  • Keel: eng
  • ISBN-13: 9781119231066
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 154,31 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2018
  • Kirjastus: Wiley-American Ceramic Society
  • Keel: eng
  • ISBN-13: 9781119231066
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Addresses materials, technology, and products that could help solve the global environmental crisis once commercialized

This multidisciplinary book encompasses state-of-the-art research on the topics of Carbon Capture and Storage (CCS), and complements existing CCS technique publications with the newest research and reviews. It discusses key challenges involved in the CCS materials design, processing, and modeling and provides in-depth coverage of solvent-based carbon capture, sorbent-based carbon capture, membrane-based carbon capture, novel carbon capture methods, computational modeling, carbon capture materials including metal organic frameworks (MOF), electrochemical capture and conversion, membranes and solvents, and geological sequestration.

Materials and Processes for CO2 Capture, Conversion and Sequestration offers chapters on: Carbon Capture in Metal-Organic Frameworks; Metal Organic Frameworks Materials for Post-Combustion CO2 Capture; New Progress of Microporous Metal-Organic Frameworks in CO2 Capture and Separation; In Situ Diffraction Studies of Selected Metal-Organic Framework (MOF) Materials for Guest Capture Applications; Electrochemical CO2 Capture and Conversion; Electrochemical Valorization of Carbon Dioxide in Molten Salts; Microstructural and Structural Characterization of Materials for CO2 Storage using Multi-Scale X-Ray Scattering Methods; Contribution of Density Functional Theory to Microporous Materials for Carbon Capture; and Computational Modeling Study of MnO2 Octahedral Molecular Sieves for Carbon Dioxide Capture Applications.

  • Addresses one of the most pressing concerns of society—that of environmental damage caused by the greenhouse gases emitted as we use fossil fuels
  • Covers cutting-edge capture technology with a focus on materials and technology rather than regulation and cost    
  • Highlights the common and novel CCS materials that are of greatest interest to industrial researchers
  • Provides insight into CCS materials design, processing characterization, and computer modeling

Materials and Processes for CO2 Capture, Conversion and Sequestration is ideal for materials scientists and engineers, energy scientists and engineers, inorganic chemists, environmental scientists, pollution control scientists, and carbon chemists.

Preface xi
List of Contributors
xiii
1 Carbon Capture In Metal-Organic Frameworks
1(78)
Mehrdad Asgari
Wendy L. Queen
1.1 Introduction
1(10)
1.1.1 The Importance of Carbon Dioxide Capture
1(2)
1.1.2 Conventional Industrial Process of Carbon Capture and Limitations: Liquid Amines
3(1)
1.1.3 Metal-Organic Frameworks and Their Synthesis
4(2)
1.1.4 CCS Technologies and MOF Requirements
6(4)
1.1.5 Molecule Specific
10(1)
1.2 Understanding the Adsorption Properties of MOFs
11(19)
1.2.1 Single-Component Isotherms
11(3)
1.2.2 Multicomponent Adsorption
14(1)
1.2.3 Experimental Breakthrough
15(1)
1.2.4 In Situ Characterization
16(14)
1.3 MOFs for Post-combustion Capture
30(18)
1.3.1 Necessary Framework Properties for CO2 Capture
30(2)
1.3.2 Assessing MOFs for CO2/N2 Separations
32(2)
1.3.3 MOFs with Open Metal Coordination Sites (OMCs)
34(3)
1.3.4 MOFs Containing Lewis Basic Sites
37(8)
1.3.5 Stability and Competitive Binding in the Presence of H2O
45(3)
1.4 MOFs for Pre-combustion Capture
48(6)
1.4.1 Advantages of Pre-combustion Capture
48(1)
1.4.2 Necessary Framework Properties for CO2 Capture
49(1)
1.4.3 Potential MOF Candidates for CO2/H2 Separations
50(4)
1.5 MOFs for Oxy-Fuel Combustion Capture
54(7)
1.5.1 Necessary Framework Properties for O2/N2 Separations
54(1)
1.5.2 Biological Inspiration for O2/N2 Separations in MOFs
55(1)
1.5.3 Potential MOF Candidates for O2/N2 Separations
56(5)
1.6 Future Perspectives and Outlook
61(18)
Acknowledgments
63(1)
References
63(16)
2 Metal-Organic Frameworks Materials for Post-Combustion Co2 Capture
79(33)
Anne M. Marti
2.1 Introduction: The Importance of Carbon Capture and Storage Technologies
79(5)
2.1.1 Post-combustion CO2 Capture Technologies
80(2)
2.1.2 Metal---Organic Frameworks: Potential for Post-combustion CCS
82(2)
2.2 Metal-Organic Frameworks as Sorbents
84(15)
2.2.1 Criteria for Choosing the Best CO2 Sorbent
84(3)
2.2.2 Discussion of Defined Sorbent Criteria
87(12)
2.3 Metal---Organic Framework Membranes for CCS
99(5)
2.3.1 Membrane Performance Defined
99(3)
2.3.2 MOF Membrane Fabrication
102(2)
2.4 Summary
104(8)
References
104(8)
3 New Progress of Microporous Metal-Organic Frameworks In Co2 Capture and Separation
112(68)
Zhangjing Zhang
Jin Tao
Shengchang Xiang
Banglin Chen
Wei Zhou
3.1 Introduction
112(4)
3.2 Survey of Typical MOF Adsorbents
116(42)
3.2.1 CO2 Capture and Separation at Low Pressure
116(23)
3.2.2 CO2 Capture and Separation at High Pressure
139(1)
3.2.3 Capture CO2 Directly from Air
140(5)
3.2.4 CO2/CH4 Separation
145(3)
3.2.5 CO2/C2 H2 Separation
148(1)
3.2.6 Photocatalytic and Electrochemical Reduction of CO2
149(3)
3.2.7 Humidity Effect
152(6)
3.3 Zeolite Adsorbents in Comparison with MOFs
158(5)
3.4 MOFs Membrane for CCS
163(2)
3.5 Summary and Outlook
165(15)
Acknowledgments
166(1)
References
167(13)
4 In Situ Diffraction Studies of Selected Metal-Organic Framework Materials for Guest Capture/Exchange Applications
180(33)
Winnie Wong-Ng
4.1 Introduction
180(2)
4.1.1 Background
180(1)
4.1.2 In Situ Diffraction Characterization
181(1)
4.2 Apparatus for In Situ Diffraction Studies
182(4)
4.2.1 Single-Crystal Diffraction Applications
182(3)
4.2.2 Powder Diffraction Applications
185(1)
4.3 In Situ Single-Crystal Diffraction Studies of MOFs
186(7)
4.3.1 Thermally Induced Reversible Single Crystal-to-Single Crystal Transformation
187(1)
4.3.2 Structure Transformation Induced by Presence of Guests
188(2)
4.3.3 Dynamic CO2 Adsorption Behavior
190(1)
4.3.4 Unstable Intermediate Stage During Guest Exchange
190(2)
4.3.5 Mechanism of CO2 Adsorption
192(1)
4.4 Powder Diffraction Studies of MOFs
193(14)
4.4.1 Synchrotron/Neutron Diffraction Studies
193(11)
4.4.2 Laboratory X-ray Diffraction Studies
204(3)
4.5 Conclusion
207(6)
References
207(6)
5 Electrochemical CO2 Capture and Conversion
213(54)
Peng Zhang
Jingjing Tong
Kevin Huang
5.1 Introduction
213(1)
5.2 Current Electrochemical Methods for Carbon Capture and Conversion
214(10)
5.2.1 Ambient-Temperature Approach
215(3)
5.2.2 High-Temperature Approach
218(6)
5.3 Development of High-Temperature Permeation Membranes for Electrochemical CO2 Capture and Conversion
224(31)
5.3.1 Development of MECC Membranes
224(11)
5.3.2 Development of MOCC Membranes
235(20)
5.4 Summary and Outlook
255(12)
Acknowledgments
258(1)
References
258(9)
6 Electrochemical Valorization of Carbon Dioxide In Molten Salts
267(29)
Huayi Yin
Dihua Wang
6.1 Introduction
267(2)
6.2 Thermodynamic Analysis of Molten Salt Electrolytes
269(13)
6.2.1 Thermodynamic Analysis of Alkali Metal Carbonates
269(6)
6.2.2 Thermodynamic Analysis of Alkaline-Earth Metal Carbonates
275(2)
6.2.3 Thermodynamic Viewpoint of Variables Affecting Electrolytic Products
277(1)
6.2.4 Thermodynamic Analysis of Mixed Melts
278(4)
6.3 Electrochemistry of Cathode and Anode
282(7)
6.3.1 Electrochemical Reactions at the Cathode
282(3)
6.3.2 Electrochemical Reaction Pathway of CO2 and CO32-(C or CO?)
285(2)
6.3.3 Electrochemical Reaction at the Anode
287(2)
6.4 Applications of Electrolytic Products
289(1)
6.5 Conclusion and Prospects
289(7)
Acknowledgments
292(1)
References
292(4)
7 Microstructural and Structural Characterization of Materials for Co2 Storage Using Multi-Scale X-Ray Scattering Methods
296(23)
Greeshma Gadikota
Andrew Allen
7.1 Introduction
296(2)
7.2 Experimental Investigations of Subsurface CO2 Trapping Mechanisms
298(2)
7.3 Comparison of Material Measurements Techniques for Microstructure Characterization
300(2)
7.4 Usaxs/Saxs Instrumentation
302(2)
7.5 Analyses of Ultrasmall- and Small-Angle Scattering Data
304(3)
7.5.1 Determination of the Volume Fractions, Mean Volumes, and Radius of Gyration Using Guinier Approximation and Scattering Invariant
304(1)
7.5.2 Determination of the Surface Area from the Porod Scattering Regime
305(1)
7.5.3 Shapes and Size Distributions
305(1)
7.5.4 Fractal Morphologies
306(1)
7.6 USAXS/SAXS/WAXS Characterization of CO2 Interactions with Na-Montmorillonite
307(5)
7.6.1 Experimental Methods
307(3)
7.6.2 Results and Discussion
310(2)
7.7 Summary
312(7)
Acknowledgments
313(1)
References
313(6)
8 Contribution of Density Functional Theory to Microporous Materials for Carbon Capture
319(25)
Eric Cockayne
8.1 Microporous Solids
320(3)
8.1.1 Oxide Molecular Sieves
320(1)
8.1.2 Rigid MOFs
321(1)
8.1.3 Flexible MOFs
322(1)
8.2 Overview of DFT
323(5)
8.2.1 Local Density Approximation
324(1)
8.2.2 General Gradient Approximation
325(1)
8.2.3 Meta-GGAs
325(1)
8.2.4 Hybrid Methods
325(1)
8.2.5 DFT+U
326(1)
8.2.6 Van der Waals (Dispersion) Forces
327(1)
8.2.7 Accuracy of DFT
327(1)
8.3 DFT: Applications
328(9)
8.3.1 CO2 Location and Binding Energetics
329(3)
8.3.2 Bandgap
332(1)
8.3.3 Elastic Properties
332(1)
8.3.4 Phonons
333(2)
8.3.5 Thermodynamics
335(1)
8.3.6 NMR
336(1)
8.3.7 Ab Initio Molecular Dynamics
336(1)
8.3.8 CO2 Diffusion
337(1)
8.4 Conclusions and Recommendations
337(7)
References
338(6)
9 Computational Modeling Study of Mno2 Octahedral Molecular Sieves for Carbon Dioxide-Capture Applications
344(13)
I. Williamson
M. Lawson
E. B. Nelson
L. Li
9.1 Introduction
344(1)
9.2 Atomic Structure Versus Magnetic Ordering
345(1)
9.3 Pore Size and Dimensionality
346(1)
9.4 CO2 Sorption Behavior
347(1)
9.4.1 Experimental Observations
347(1)
9.4.2 DFT Studies
348(1)
9.5 Comparison of Cation Dopant Types
348(3)
9.5.1 Cation Effects on CO2 Sorption in OMS-2
349(2)
9.6 OMS-5
351(2)
9.7 Summary
353(4)
References
354(3)
Index 357
LAN (SAMANTHA) LI, PHD, is an assistant professor at the Micron School of Materials Science and Engineering at Boise State University, and an affiliate researcher at the Center for Advanced Energy Studies in Idaho.

WINNIE WONG-NG, PHD, FAAAS, FACA, FACERS, and DFICDD, is a research chemist in the Materials Measurement Science Division of the National Institute of Standards and Technology.

KEVIN HUANG, PHD, is a SmartState Chair professor in the Mechanical Engineering Department and director at the SmartState Center for Solid Oxide Fuel Cells at the University of South Carolina.

LAWRENCE P. COOK, PHD, is a research ordinary professor of chemistry and a lecturer in the Materials Science and Engineering Department at The Catholic University of America in Washington, DC.