Muutke küpsiste eelistusi

E-raamat: Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma

(Lomonosov Moscow State University, Moscow, RU)
  • Formaat: 310 pages
  • Ilmumisaeg: 08-Apr-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9781000012194
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 310 pages
  • Ilmumisaeg: 08-Apr-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9781000012194

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles.

Key selling features:

  • Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics).
  • Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse.
  • Includes studies of large-amplitude plasma oscillations.
  • Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature
  • Written at a level accessible for researchers, academia, and engineers.



This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse.

Preface ix
Part I Free plasma oscillations
1 Introductory information
1(22)
1.1 What is breaking?
1(4)
1.2 Physical model and basic equations
5(8)
1.3 About initial conditions
13(3)
1.4 About boundary conditions
16(2)
1.5 Bibliography and comments
18(5)
2 Plane one-dimensional non-relativistic electron oscillations
23(25)
2.1 Problem statement in Eulerian and Lagrangian variables
23(2)
2.2 Axial solutions
25(11)
2.3 `Triangular' solutions
36(4)
2.3.1 Simple solutions
37(1)
2.3.2 Composite solutions
38(2)
2.4 Numerical--analytical method
40(4)
2.5 Bibliography and comments
44(4)
3 Plane one-dimensional relativistic electron oscillations
48(28)
3.1 Problem statement in the Eulerian and Lagrangian variables
48(2)
3.2 Theoretical background of breaking
50(5)
3.2.1 Quadratic frequency shift
51(3)
3.2.2 Violation of the property of invariance
54(1)
3.3 Method in Lagrangian variables
55(2)
3.4 Scenario of development and completion of oscillations
57(5)
3.5 Method in the Eulerian variables
62(3)
3.6 Artificial boundary conditions
65(6)
3.6.1 Full damping of oscillations
66(1)
3.6.2 Linearization of the original equations
67(1)
3.6.3 Accounting for the weak nonlinearity of the original equations
68(1)
3.6.4 Deterioration of the approximation at the boundary
69(2)
3.7 Bibliography and comments
71(5)
4 Cylindrical one-dimensional relativistic and non-relativistic electron oscillations
76(56)
4.1 Problem statements in Eulerian and Lagrangian variables
76(6)
4.2 Analytical studies
82(7)
4.2.1 Axial solution
82(5)
4.2.2 Perturbation method
87(2)
4.3 Finite difference method
89(14)
4.3.1 Auxiliary designs. Splitting into physical processes
89(2)
4.3.2 Construction of difference schemes
91(3)
4.3.3 Process scenario
94(9)
4.5 Calculation of axial solutions
103(15)
4.5.1 Free non-relativistic oscillations
103(7)
4.5.2 Forced relativistic oscillations
110(8)
4.6 About spherical oscillations
118(11)
4.6.1 Problems formulation
118(4)
4.6.2 Axial solution
122(3)
4.6.3 Perturbation method
125(2)
4.6.4 For numerical modelling
127(2)
4.7 Bibliography and comments
129(3)
5 Influence of ion dynamics on plane one-dimensional oscillations
132(19)
5.1 Formulation of the problem
132(4)
5.2 Scaling equations and difference scheme
136(4)
5.3 Axial solution
140(4)
5.4 Calculation results
144(4)
5.5 Bibliography and comments
148(3)
6 Plane two-dimensional relativistic electron oscillations
151(31)
6.1 Formulation of the problem
151(2)
6.2 Asymptotic theory
153(4)
6.3 Difference scheme
157(6)
6.3.1 Difference equations in the internal nodes of the grid
159(2)
6.3.2 Implementation of the artificial boundary conditions
161(2)
6.4 Numerical experiments
163(17)
6.4.1 General remarks
163(2)
6.4.2 Calculations with circular symmetry
165(3)
6.4.3 Quasi-one-dimensional model
168(5)
6.4.4 Small deviation from circular symmetry
173(3)
6.4.5 Significant difference from circular symmetry
176(4)
6.5 Bibliography and comments
180(2)
Part II Plasma wake waves
7 Introductory information
182(26)
7.1 Source equations
182(4)
7.2 The case of an arbitrary pulse velocity
186(6)
7.2.1 Equations in scalar form
186(1)
7.2.2 New coordinates and quasistatics
187(1)
7.2.3 Equations in dimensionless variables
188(1)
7.2.4 Equations in convenient variables
189(3)
7.3 The basic formulation of the problem
192(4)
7.3.1 Nonlinear statement
192(2)
7.3.2 Linearized formulation
194(2)
7.4 `Slow' pulse
196(7)
7.4.1 Linearized equations
196(1)
7.4.2 Auxiliary Cauchy problem
197(4)
7.4.3 Numerical---asymptotic method
201(2)
7.5 Bibliography and comments
203(5)
8 Numerical algorithms for the basic problem
208(38)
8.1 Difference method I
208(8)
8.1.1 Construction of a difference scheme
208(3)
8.1.2 Study of schemes in variations
211(3)
8.1.3 The algorithm for implementing the difference scheme I
214(2)
8.2 Difference method II
216(5)
8.2.1 Construction of a difference scheme
216(2)
8.2.2 Study of schemes in variations
218(1)
8.2.3 Algorithm for the implementation of difference scheme II
219(2)
8.3 Difference method III (Linearization method)
221(7)
8.3.1 Setting the task in a convenient form
221(2)
8.3.2 Preliminary transformations
223(2)
8.3.3 Difference method III in the linear case
225(1)
8.3.4 Difference method III in the nonlinear case
226(2)
8.4 Projection method
228(5)
8.4.1 Setting the problem in a convenient form
228(1)
8.4.2 Description of the projection method
229(3)
8.4.3 Numerical implementation of the projection method
232(1)
8.5 Numerical experiments and comparison methods
233(6)
8.6 Bibliography and comments
239(7)
9 Additional research
246(35)
9.1 Axial wake wave solution
246(11)
9.1.1 Formulation of the `truncated' problem
246(4)
9.1.2 Numerical algorithm for solving the `truncated' problem
250(1)
9.1.3 Calculation results
251(6)
9.2 Accounting for the dynamics of ions in the wake wave
257(11)
9.2.1 Problem statement in physical variables
257(3)
9.2.2 Statement of the problem in convenient variables
260(2)
9.2.3 Solution method
262(4)
9.2.4 Calculation results
266(2)
9.3 Elliptical pulse
268(11)
9.3.1 Formulation of the problem
268(5)
9.3.2 Difference scheme and solution method
273(4)
9.3.3 Calculation results
277(2)
9.4 Bibliography and comments
279(2)
Conclusion 281(3)
References 284(7)
Index 291
E.V. Chizhonkov, Lomonosov Moscow State University, Moscow, RU