Preface to the Second Edition |
|
vii | |
Preface to the First Edition |
|
ix | |
1 Mathematical Preliminaries |
|
1 | (36) |
|
1.1 An Introduction to the Laplace Transform |
|
|
1 | (1) |
|
1.2 Properties of the Laplace Transform |
|
|
2 | (10) |
|
1.3 A Second Proof of the Initial Value Theorem |
|
|
12 | (3) |
|
1.3.1 The Intuition Behind the Proof |
|
|
13 | (1) |
|
|
13 | (2) |
|
1.4 Finding the Inverse Laplace Transform |
|
|
15 | (4) |
|
1.4.1 Some Simple Inverse Transforms |
|
|
16 | (2) |
|
1.4.2 The Quadratic Denominator |
|
|
18 | (1) |
|
1.5 Integro-Differential Equations |
|
|
19 | (5) |
|
1.6 An Introduction to Stability |
|
|
24 | (5) |
|
1.6.1 Some Preliminary Manipulations |
|
|
24 | (2) |
|
|
26 | (2) |
|
1.6.3 Why We Obsess about Stability |
|
|
28 | (1) |
|
1.6.4 The Tacoma Narrows Bridge-A Brief Case History |
|
|
29 | (1) |
|
|
29 | (3) |
|
|
29 | (1) |
|
|
30 | (2) |
|
|
32 | (5) |
2 Transfer Functions |
|
37 | (30) |
|
|
37 | (2) |
|
2.2 The Frequency Response of a System |
|
|
39 | (3) |
|
|
42 | (3) |
|
2.4 The Time Response of Certain "Typical" Systems |
|
|
45 | (3) |
|
2.4.1 First Order Systems |
|
|
45 | (1) |
|
2.4.2 Second Order Systems |
|
|
46 | (2) |
|
2.5 Three Important Devices and Their Transfer Functions |
|
|
48 | (6) |
|
2.5.1 The Operational Amplifier (op amp) |
|
|
48 | (3) |
|
|
51 | (1) |
|
2.5.3 The "Simple Satellite" |
|
|
52 | (2) |
|
2.6 Zeros in the Right Half-Plane |
|
|
54 | (1) |
|
2.7 Block Diagrams and How to Manipulate Them |
|
|
55 | (3) |
|
|
58 | (3) |
|
|
61 | (6) |
3 Feedback-An Introduction |
|
67 | (20) |
|
3.1 Why Feedback-A First View |
|
|
67 | (1) |
|
|
68 | (2) |
|
3.3 More about Sensitivity |
|
|
70 | (1) |
|
|
71 | (1) |
|
3.5 System Behavior at DC |
|
|
72 | (4) |
|
3.6 Tracking Inputs of the Form tnu(t) |
|
|
76 | (2) |
|
|
78 | (2) |
|
3.8 Disturbance Rejection |
|
|
80 | (1) |
|
|
81 | (6) |
4 The Routh-Hurwitz Criterion |
|
87 | (18) |
|
4.1 Roots of Polynomials-A Little History |
|
|
87 | (1) |
|
4.2 Theorem, Proof, and Applications |
|
|
88 | (9) |
|
|
97 | (4) |
|
|
101 | (4) |
5 The Principle of the Argument and Its Consequences |
|
105 | (46) |
|
5.1 More about Poles in the Right Half Plane |
|
|
105 | (1) |
|
5.2 The Principle of the Argument |
|
|
106 | (1) |
|
5.3 The Proof of the Principle of the Argument |
|
|
107 | (2) |
|
5.4 How are Encirclements Measured? |
|
|
109 | (3) |
|
5.5 First Applications to Control Theory |
|
|
112 | (2) |
|
5.6 Systems with Low-Pass Open-Loop Transfer Functions |
|
|
114 | (6) |
|
5.7 MATLAB® and Nyquist Plots |
|
|
120 | (1) |
|
5.8 The Nyquist Plot and Delays |
|
|
121 | (4) |
|
5.9 Delays and the Routh-Hurwitz Criterion |
|
|
125 | (2) |
|
|
127 | (5) |
|
|
132 | (1) |
|
5.12 An (Approximate) Connection between Frequency Specifications and Time Specification |
|
|
133 | (3) |
|
|
136 | (7) |
|
|
143 | (8) |
6 The Root Locus Diagram |
|
151 | (42) |
|
6.1 The Root Locus-An Introduction |
|
|
151 | (2) |
|
6.2 Rules for Plotting the Root Locus |
|
|
153 | (15) |
|
6.2.1 The Symmetry of the Root Locus |
|
|
153 | (1) |
|
6.2.2 Branches on the Real Axis |
|
|
154 | (1) |
|
6.2.3 The Asymptotic Behavior of the Branches |
|
|
155 | (3) |
|
6.2.4 Departure of Branches from the Real Axis |
|
|
158 | (5) |
|
6.2.5 A "Conservation Law" |
|
|
163 | (1) |
|
6.2.6 The Behavior of Branches as They Leave Finite Poles or Enter Finite Zeros |
|
|
164 | (2) |
|
6.2.7 A Group of Poles and Zeros Near the Origin |
|
|
166 | (2) |
|
6.3 Some (Semi-)Practical Examples |
|
|
168 | (16) |
|
6.3.1 The Effect of Zeros in the Right Half-Plane |
|
|
168 | (1) |
|
6.3.2 The Effect of Three Poles at the Origin |
|
|
169 | (1) |
|
6.3.3 The Effect of Two Poles at the Origin |
|
|
169 | (2) |
|
6.3.4 A System that Tracks t sin(t) |
|
|
171 | (3) |
|
6.3.5 Variations on Our Theme |
|
|
174 | (2) |
|
6.3.6 The Effect of a Delay on the Root Locus Plot |
|
|
176 | (3) |
|
6.3.7 The Phase-lock Loop |
|
|
179 | (3) |
|
6.3.8 Sounding a Cautionary Note-Pole-Zero Cancellation |
|
|
182 | (2) |
|
6.4 More on the Behavior of the Roots of Q (s) I K + P(s) = 0 |
|
|
184 | (2) |
|
|
186 | (7) |
7 Compensation |
|
193 | (54) |
|
7.1 Compensation-An Introduction |
|
|
193 | (1) |
|
|
193 | (1) |
|
7.3 Phase-Lag Compensation |
|
|
194 | (7) |
|
7.4 Phase-Lead Compensation |
|
|
201 | (5) |
|
7.5 Lag-Lead Compensation |
|
|
206 | (1) |
|
|
207 | (7) |
|
|
214 | (8) |
|
|
215 | (1) |
|
7.7.2 The Phase-Lag Compensator |
|
|
215 | (2) |
|
7.7.3 The Phase-Lead Compensator |
|
|
217 | (2) |
|
7.7.4 The Lag-Lead Compensator |
|
|
219 | (2) |
|
|
221 | (1) |
|
7.8 The Ziegler-Nichols Rules |
|
|
222 | (8) |
|
|
222 | (1) |
|
|
223 | (1) |
|
7.8.3 Characterizing the Plant |
|
|
224 | (2) |
|
7.8.4 A Partial Verification |
|
|
226 | (2) |
|
7.8.5 Estimating the System's Phase Margin |
|
|
228 | (1) |
|
7.8.6 Estimating the System's Gain Margin |
|
|
228 | (1) |
|
7.8.7 Estimating the System's Settling Time |
|
|
229 | (1) |
|
7.9 Bode's Sensitivity Integrals |
|
|
230 | (11) |
|
|
230 | (1) |
|
7.9.2 The Sensitivity Function |
|
|
230 | (1) |
|
7.9.3 Bode's Sensitivity Integrals |
|
|
230 | (1) |
|
|
231 | (2) |
|
|
233 | (1) |
|
|
234 | (2) |
|
|
236 | (3) |
|
7.9.8 Available Bandwidth |
|
|
239 | (1) |
|
7.9.9 Open-Loop Unstable Systems with Limited Available Bandwidth |
|
|
240 | (1) |
|
|
241 | (6) |
8 Some Nonlinear Control Theory |
|
247 | (24) |
|
|
247 | (1) |
|
8.2 The Describing Function Technique |
|
|
248 | (12) |
|
8.2.1 The Describing Function Concept |
|
|
248 | (3) |
|
8.2.2 Predicting Limit Cycles |
|
|
251 | (1) |
|
8.2.3 The Stability of Limit Cycles |
|
|
252 | (3) |
|
|
255 | (3) |
|
8.2.4.1 A Nonlinear Oscillator |
|
|
255 | (1) |
|
8.2.4.2 A Comparator with a Dead Zone |
|
|
256 | (1) |
|
8.2.4.3 A Simple Quantizer |
|
|
257 | (1) |
|
|
258 | (2) |
|
|
260 | (5) |
|
8.4 The Tsypkin Locus and the Describing Function Technique |
|
|
265 | (2) |
|
|
267 | (4) |
9 An Introduction to Modern Control |
|
271 | (32) |
|
|
271 | (1) |
|
9.2 The State Variables Formalism |
|
|
271 | (2) |
|
9.3 Solving Matrix Differential Equations |
|
|
273 | (1) |
|
9.4 The Significance of the Eigenvalues of the Matrix |
|
|
274 | (2) |
|
9.5 Poles and Eigenvalues |
|
|
276 | (1) |
|
9.6 Inhomogeneous Matrix Differential Equations |
|
|
277 | (1) |
|
9.7 The Cayley-Hamilton Theorem |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (2) |
|
|
283 | (2) |
|
9.12 Choosing States When a System is Characterized by an ODE |
|
|
285 | (1) |
|
9.13 Converting Transfer Functions to State Equations |
|
|
286 | (3) |
|
|
289 | (8) |
|
|
289 | (1) |
|
9.14.2 Adding an Integrator |
|
|
290 | (2) |
|
9.14.3 Modern Control Using MATLAB® |
|
|
292 | (1) |
|
9.14.4 A System that is not Observable |
|
|
293 | (1) |
|
9.14.5 A Second System that is not Observable |
|
|
294 | (1) |
|
9.14.6 A System that is neither Observable nor Controllable |
|
|
295 | (1) |
|
9.14.7 Designing an Observer |
|
|
296 | (1) |
|
9.15 Some Technical Results about Series of Matrices |
|
|
297 | (2) |
|
|
299 | (4) |
10 Control of Hybrid Systems |
|
303 | (44) |
|
|
303 | (1) |
|
10.2 The Definition of the Z-Transform |
|
|
303 | (1) |
|
|
304 | (1) |
|
10.4 Properties of the Z-Transform |
|
|
305 | (4) |
|
10.5 Sampled-data Systems |
|
|
309 | (1) |
|
10.6 The Sample-and-Hold Element |
|
|
310 | (2) |
|
10.7 The Delta Function and its Laplace Transform |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
10.10 Calculating the Pulse Transfer Function |
|
|
314 | (4) |
|
10.11 Using MATLAB® to Perform the Calculations |
|
|
318 | (2) |
|
10.12 The Transfer Function of a Discrete-Time System |
|
|
320 | (1) |
|
10.13 Adding a Digital Compensator |
|
|
321 | (2) |
|
10.14 Stability of Discrete-Time Systems |
|
|
323 | (2) |
|
10.15 A Condition for Stability |
|
|
325 | (3) |
|
10.16 The Frequency Response |
|
|
328 | (2) |
|
10.17 A Bit about Aliasing |
|
|
330 | (1) |
|
10.18 The Behavior of the System in the Steady-State |
|
|
330 | (1) |
|
10.19 The Bilinear Transform |
|
|
331 | (5) |
|
10.20 The Behavior of the Bilinear Transform as T -> 0 |
|
|
336 | (1) |
|
10.21 Digital Compensators |
|
|
337 | (3) |
|
10.22 When Is There No Pulse Transfer Function? |
|
|
340 | (1) |
|
10.23 An Introduction to The Modified Z-Transform |
|
|
341 | (2) |
|
|
343 | (4) |
11 Answers to Selected Exercises |
|
347 | (80) |
|
|
347 | (5) |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
352 | (5) |
|
|
352 | (1) |
|
|
352 | (2) |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
357 | (4) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
361 | (5) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
366 | (19) |
|
|
366 | (3) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
374 | (1) |
|
|
375 | (4) |
|
|
379 | (2) |
|
|
381 | (2) |
|
|
383 | (2) |
|
|
385 | (13) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (2) |
|
|
389 | (1) |
|
|
390 | (2) |
|
|
392 | (3) |
|
|
395 | (1) |
|
|
395 | (2) |
|
|
397 | (1) |
|
|
398 | (13) |
|
|
398 | (2) |
|
|
400 | (2) |
|
|
402 | (1) |
|
|
403 | (3) |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
411 | (5) |
|
|
411 | (3) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (5) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (1) |
|
|
417 | (1) |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
421 | (6) |
|
|
421 | (1) |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
424 | (1) |
|
|
425 | (2) |
Bibliography |
|
427 | (2) |
Index |
|
429 | |