Muutke küpsiste eelistusi

E-raamat: Mathematical Methodologies in Pattern Recognition and Machine Learning: Contributions from the International Conference on Pattern Recognition Applications and Methods, 2012

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume features key contributions from the International Conference on Pattern Recognition Applications and Methods, (ICPRAM 2012,) held in Vilamoura, Algarve, Portugal from February 6th-8th, 2012. The conference provided a major point of collaboration between researchers, engineers and practitioners in the areas of Pattern Recognition, both from theoretical and applied perspectives, with a focus on mathematical methodologies. Contributions describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, and experimental and theoretical studies which yield new insights that provide key advances in the field. 

 

This book will be suitable for scientists and researchers in optimization, numerical methods, computer science, statistics and for differential geometers and mathematical physicists.
On order equivalences between distance and similarity measures on sequences and trees.- Scalable Corpus Annotation by Graph Construction and Label Propagation.- Computing the reeb graph for triangle meshes with active contours.- Efficient Computation of Voronoi Neighbors based on Polytope search in Pattern Recognition.- Estimation of the common oscillation for Phase Locked Matrix Factorization.- ASSET: Approximate Stochastic Subgradient Estimation Training for Support Vector Machines.- Pitch-sensitive Components emerge from Hierarchical Sparse Coding of Natural Sounds.- Generative Embeddings based on Rican Mixtures: Application to KernelBased Discriminative Classification of Magnetic Resonance Images.-Single-Frame Signal Recovery Using a Similarity-Prior Based on Pearson Type VII MRF.- Tracking solutions of time varying linear inverse problems.- Stacked Conditional Random Fields Exploiting Structural Consistencies.- Segmentation of Vessel Geometries from Medical Images using GPF Deformable Model.- Robust Deformable Model for Segmenting the Left Ventricle in 3D volumes of Ultrasound Data.- Algorithm to maintain linear element in 3D Level Set Topology Optimization.- Facial Expression recognition using Log-Euclidean statistical shape models.?