Muutke küpsiste eelistusi

E-raamat: Mathematical Methods in Quantum Mechanics

  • Formaat - PDF+DRM
  • Hind: 88,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators.

Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrödinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory.

This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics.

Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature.

This new edition has additions and improvements throughout the book to make the presentation more student friendly.

Arvustused

The book is written in a very clear and compact style. It is well suited for self-study and includes numerous exercises (many with hints)." - Zentralblatt MATH

"The author presents this material in a very clear and detailed way and supplements it by numerous exercises. This makes the book a nice introduction to this exciting field of mathematics." - Mathematical Reviews

Preface
Part
0. Preliminaries
Chapter
0. A first look at Banach and Hilbert spaces
Part
1. Mathematical foundations of quantum mechanics
Chapter
1. Hilbert spaces
Chapter
2. Self-adjointness and spectrum
Chapter
3. The spectral theorem
Chapter
4. Applications of the spectral theorem
Chapter
5. Quantum dynamics
Chapter
6. Perturbation theory for self-adjoint operators
Part
2. Schrödinger operators
Chapter
7. The free Schrödinger operator
Chapter
8. Algebraic methods
Chapter
9. One-dimensional Schrödinger operators
Chapter
10. One-particle Schrödinger operators
Chapter
11. Atomic Schrödinger operators
Chapter
12. Scattering theory
Part
3. Appendix
Chapter
13. Almost everything about Lebesgue integration
Bibliographical notes
Bibliography
Glossary of notation
Index
Gerald Teschl, University of Vienna, Austria.