Muutke küpsiste eelistusi

E-raamat: Mathematical Methods for Robust and Nonlinear Control: EPSRC Summer School

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The underlying theory on which much modern robust and nonlinear control is based can often be dif cult for the student to grasp. In particular, the mathematical - pects can be problematic for students from a standard engineering background. The EPSRC sponsored Summer School which was held in Leicester in September 2006 attempted to ?ll the gap in students appreciation the theory relevant to several important areas of control. This book is a collection of lecture notes which were p- sented at that workshop and consists of, broadly, two parts. The ?rst nine chapters are devoted to the theory behind several areas of robust and nonlinear control and are aimed at introducing fundamental concepts to the reader. The last six chapters contain detailed case studies which aim to demonstrate the use and effectiveness of these modern techniques in real engineering applications. It is hoped that this book will provide a useful introduction to many of the more common robust and nonlinear control techniques and serve as a valuable reference for the more adept practitioner. Leicester, Matthew C. Turner May 2007 Declan G. Bates Contents List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV Part I Theory of Robust and Nonlinear Control 1H Control Design ? Declan G. Bates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Design Speci cations and Fundamental Trade-offs . . . . . . . . . . . . . . . . . . 5 1. 2. 1 Linear Design Speci cations for RobustControl Systems . . . . . 6 1. 2. 2 Frequency Domain Design Speci cations and Fundamental Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 3 Mixed-sensitivityH Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . .
Part I Theory of Robust and Nonlinear Control
H∞ Control Design
3(44)
Declan G. Bates
Introduction
3(2)
Design Specifications and Fundamental Trade-offs
5(3)
Linear Design Specifications for Robust Control Systems
6(1)
Frequency Domain Design Specifications and Fundamental Trade-offs
6(2)
Mixed-sensitivity H∞ Controller Design
8(16)
Formulating the Problem
8(3)
Weighting Function Selection
11(1)
Solution of the H∞ Control Problem
11(2)
Design Example: Control Law Design for the Bell 205 Helicopter
13(11)
H∞ Loop-shaping Controller Design
24(23)
Fundamental Trade-offs in Terms of L
24(2)
The H∞ Loop-shaping Design Procedure
26(3)
Advantages of H∞ Loop-shaping
29(4)
Design Example: Control Law Design for the Harrier V/STOL Aircraft
33(10)
References
43(4)
Structural Methods for Linear Systems: An Introduction
47(52)
Nicos Karcanias
Efstathios Milonidis
Introduction
48(2)
Classification of System Representations
50(2)
State Space Descriptions
50(1)
Polynomial Models:
51(1)
Transfer Function Descriptions
51(1)
Background on Polynomial Matrices and Matrix Pencils
52(3)
Matrix Divisors and Minimal Bases
53(2)
Strict Equivalence Invariants of Matrix Pencils [ 13]
55(1)
Dynamics, Stability, Controllability and Observability
55(6)
Solution of State Space Equations
55(2)
Internal-External and Total Stability
57(1)
Controllability and Observability
58(2)
System Minimality
60(1)
Poles and Zeros of State Space Model
61(11)
Eigenvalues, Eigenvectors and Free Rectilinear Motions
61(1)
Forced Rectilinear Motions and Frequency Transmission
62(1)
Frequency Transmission Blocking and State Space Zeros
63(2)
Right Regular Systems
65(1)
Properties of Zero Directions
65(1)
Right Singular Systems
66(1)
Frequency Transmission Blocking for Infinite Frequencies
67(2)
Zero Structure and System Transformations
69(1)
The Zero Pencil of Strictly Proper System
70(1)
Decoupling Zeros
71(1)
Poles and Zeros of Transfer Function Models
72(5)
Dynamic Characterisation of Transfer Function Poles and Zeros
72(1)
Smith-McMillan Form Characterisation of Poles and Zeros
73(1)
Matrix-Fraction Descriptions, and Poles and Zeros
74(1)
Infinite Poles and Zeros
74(1)
Smith-McMillan Form at Infinity: Infinite Poles and Zeros
75(1)
Impulsive Dynamics and Properties of Infinite Poles and Zeros [ 57]
76(1)
System Algebraic Functions and Generalised Nyquist and Root Locus
77(3)
Characteristic Gain, Frequency Functions
77(1)
Poles and Zeros of the System Algebraic Functions
78(1)
Root Locus and the Output Zeroing Problem
79(1)
The Feedback Configuration and Structural Properties
80(4)
Structural Properties of the Feedback Configuration
80(3)
Closed-loop Performance and the Return Ratio Difference and Sensitivity Matrices
83(1)
Determinantal Assignment Problems: Exterior Algebra-Algebraic Geometry Methods
84(8)
Determinantal Assignment Problems
85(3)
The General Determinantal Assignment Problem
88(1)
Grassmann- Plucker Invariants
89(3)
Conclusions
92(7)
Invariants and Canonical Forms
92(2)
List of Symbols, Abbreviations
94(1)
References
94(5)
Modelling and Model Reduction---State-Space Truncation†
99(24)
David J. N. Limebeer
Introduction
99(2)
State-space Truncation
101(5)
The Truncation Error
103(1)
Singular Perturbation Approximation
104(2)
Main Points of the Section
106(1)
Balanced Realization
106(4)
Model Reduction Motivation
106(2)
Balanced Realization
108(1)
Main Points of the Section
109(1)
Balanced Truncation
110(6)
Stability
110(2)
Error Bound for ``one-step'' Truncation
112(1)
The Error Bound for Balanced Truncation
113(1)
Tightness of the Bound
114(1)
Frequency Dependence of the Error
115(1)
Main Points of the Section
115(1)
Balanced Singular Perturbation Approximation
116(1)
Main Point of the Section
116(1)
Example
117(1)
Notes and References
117(2)
Problems
119(4)
References
122(1)
Linear Matrix Inequalities in Control
123(20)
Guido Herrmann
Matthew C. Turner
Ian Postlethwaite
Introduction to LMI Problems
123(5)
Fundamental LMI Properties
124(1)
Systems of LMIs
125(1)
Types of LMI Problems
126(1)
LMI Feasibility Problems
126(1)
Linear Objective Minimization Problems
127(1)
Generalized Eigenvalue Problems
127(1)
Tricks in LMI Problems
128(6)
Change of Variables
128(1)
Congruence Transformation
129(1)
Schur Complement
130(1)
The S-procedure
131(1)
The Projection Lemma and Finsler's Lemma
132(2)
Examples
134(7)
Lyapunov Stability for Continuous-time Systems
134(1)
L2 Gain
134(1)
Lyapunov Stability for Discrete-time Systems
135(1)
l2 Gain
136(1)
Sector Boundedness
137(1)
A Slightly More Detailed Example
138(3)
Summary
141(2)
References
141(2)
Anti-windup Compensation and the Control of Input-constrained Systems
143(32)
Matthew C. Turner
Guido Herrmann
Ian Postlethwaite
Introduction
143(5)
Input Constraints in Control Systems
143(1)
Constrained System Description
144(2)
Constrained Control and Anti-windup
146(2)
Problems Due to Saturation
148(4)
Clues From Classical Control
149(3)
Stability of Systems with Input Saturation
152(7)
Definitions of Stability
152(2)
Saturation Modelling
154(1)
An Equivalent Representation
154(1)
Sector Bounding
155(2)
The Multivariable Circle Criterion
157(2)
Anti-windup Problem Definition
159(1)
An Anti-windup Solution
160(5)
Architecture
160(3)
Full Order Compensators
163(2)
Simple Examples
165(4)
Simple 2nd-order Example
165(1)
The Nominal System
165(1)
The Constrained System
166(1)
The Constrained System and Anti-windup
166(2)
Lockheed Martin F104 Example
168(1)
The Nominal System
168(1)
The Constrained System
168(1)
The Constrained System and Anti-windup
169(1)
Conclusion
169(2)
Further Reading
170(1)
Acknowledgements
171(4)
References
171(4)
Output Feedback H∞ Loop-shaping Controller Synthesis
175(20)
Emmanuel Prempain
Ian Postlethwaite
Introduction
175(1)
Preliminaries
176(3)
LMI Formulation of Performance Specifications
176(1)
H∞ Performance
176(1)
H∞ Performance
177(1)
Normalized Left Coprime Factorization for LTI Systems
177(2)
Synthesis
179(2)
Loop-shaping
181(5)
LMI Formulation of the H∞ Loop-shaping Controller Synthesis
181(2)
Controller Reconstruction
183(1)
Design Procedure for a Static H∞ Loop-shaping Controller
184(1)
Static H∞ Flight Control System Design for the Bell 205 Helicopter
184(1)
Plant Description
184(1)
Static H∞ Helicopter Controller Design
184(2)
H∞ Loop-shaping for Polytopic Systems
186(3)
Left Coprime Factors for Polytopic Systems
187(2)
LMI Conditions
189(3)
Illustrative Example
190(2)
Conclusions
192(3)
References
192(3)
Stability and Asymptotic Behaviour of Nonlinear Systems: An Introduction
195(26)
Hartmut Logemann
Eugene P. Ryan
Introduction
195(2)
Terminology and Notation
197(1)
Background Concepts in Analysis
197(2)
Initial-value Problems: Existence of Solutions
199(3)
Ordinary Differential Equations
199(2)
Autonomous Differential Inclusions
201(1)
ω-limit Sets
202(1)
Barbalat's Lemma, LaSalle's Invariance Principle, and Lyapunov Stability
202(4)
Generalizations of Barbalat's Lemma
206(5)
Nonautonomous Ordinary Differential equations
211(2)
Autonomous Differential Inclusions
213(8)
References
218(3)
Sliding-mode Observers†
221(22)
Christopher Edwards
Sarah K. Spurgeon
Chee P. Tan
Nitin Patel
Introduction
221(1)
A Discontinuous Observer
222(3)
Observers with Linear and Discontinuous Injection
225(2)
The Walcott and Zak Observer
227(1)
Synthesizing the Gains
228(1)
A Convex Parameterization
228(4)
A Case Study: Road Tyre Friction Estimation
232(6)
Tyre/Road Friction and Vehicle Modelling
232(2)
Observer Design
234(4)
Summary
238(2)
Notes and References
240(1)
Acknowledgements
240(3)
References
240(3)
Sliding-mode Control in Systems with Output Time Delay
243(24)
Alan S.I. Zinober
G. Liu
Yuri B. Shtessel
Introduction
243(1)
Sliding-mode Control
244(6)
Regulator System
244(1)
Model-Following Control System
244(1)
Sliding-mode
245(2)
Feedback Control
247(2)
Second-order Example
249(1)
Application Problem
250(12)
Problem Formulation
251(1)
Pade Approximations and Time Delay Systems
252(2)
System Centre Method and Sliding-mode Control
254(1)
Numerical Example and Simulations
255(2)
Feedback by y and Describing Function
257(5)
Conclusions
262(5)
References
262(5)
Part II Applications of Robust and Nonlinear Control
Control Engineering and Systems Biology
267(22)
Burton W. Andrews
Pablo A. Iglesias
Introduction
267(1)
Negative Feedback
268(9)
Negative Feedback: Regulation
268(5)
Negative Feedback: Sensitivity and Robustness
273(4)
Positive Feedback
277(7)
Positive Feedback: Amplification
277(1)
Positive Feedback: Switching and Memory
278(3)
Positive Feedback: Oscillations
281(3)
Discussion
284(5)
References
284(5)
Robust Control of a Distillation Column
289(40)
Da-Wei Gu
Introduction
289(1)
Dynamic Model of the Distillation Column
290(3)
Uncertainty Modelling
293(3)
Closed-loop System Performance Specifications
296(4)
Open-loop and Closed-loop System Interconnections
300(1)
Controller Design
301(13)
Loop Shaping Design
301(6)
μ-synthesis
307(7)
Nonlinear System Simulation
314(4)
Conclusions
318(11)
References
319(10)
Robust Control of a Hard-disk Drive
329(44)
Da-Wei Gu
Hard Disk Drive Servo System
329(6)
Derivation of Uncertainty Model
335(5)
Closed-loop System Design Specifications
340(2)
System Interconnections
342(1)
Controller Design in Continuous Time
343(9)
μ-design
345(6)
H∞ Design
351(1)
H∞ Loop-shaping Design
351(1)
Comparison of Designed Controllers
352(7)
Controller Order Reduction
359(2)
Design of Discrete-time Controller
361(4)
Nonlinear System Simulation
365(3)
Conclusions
368(5)
References
369(4)
Modelling and Control of Railway Vehicle Suspensions
373(40)
Argyrios C. Zolotas
Roger M. Goodall
Overview of Railway Vehicle Dynamics and Control
373(8)
Railway Vehicles: Conventional Configuration
373(1)
Suspension Design Requirements
374(1)
Modelling of Suspensions (for Applying Control)
375(3)
Control Concepts
378(1)
Tilting Trains
378(1)
Active Secondary Suspensions
379(1)
Active Primary Suspensions
380(1)
Case Study: Control of Secondary Suspensions - Tilting Trains
381(26)
Historical Facts on Tilt Control
381(1)
Tilting Vehicle Modelling
382(3)
Tilt Control Requirements and Assessment Approach
385(1)
Requirements
385(1)
Tilt Control Assessment
386(1)
Track Inputs
387(1)
Conventional Tilt Control
387(1)
Classical Nulling Control Strategy
387(3)
Command-driven with Precedence Control
390(4)
Nulling-type Tilt via Robust Control Techniques
394(1)
LQG/LTR Nulling-type Tilt Control
394(5)
Multi-objective H∞/H2 Nulling-type Control via LMIs
399(7)
Case Study Remarks
406(1)
Appendix A- Tilting Train Parameter Values and Notation
407(1)
Appendix B- H∞ Based Controllers: Preliminaries
407(6)
Basic Notation
407(1)
Frequency Domain Spaces and Norms
408(1)
Linear Fractional Transformations
409(2)
References
411(2)
Case Study on Anti-windup Compensation - Micro-actuator Control in a Hard-disk Drive
413(18)
Guido Herrmann
Matthew C. Turner
Ian Postlethwaite
Introduction
413(2)
The Micro-actuator Control loop and Windup Problems
415(4)
Anti-windup Compensation for Discrete Linear Control Systems
419(5)
Anti-windup Compensation for the Micro-actuator
424(1)
The Micro-actuator Control Loop as Part of a Hard-disk-drive Servo-system
425(3)
Summary
428(3)
References
429(2)
Enhancing Immune System Response Through Optimal Control
431(12)
Robert F. Harrison
Introduction
431(1)
Lotka-Volterra Equations
431(5)
Analysis of Equilibria
433(3)
Optimal Control
436(2)
Linear, Time-varying Quadratic Optimal Control
436(2)
Immune System Dynamics
438(5)
Optimal Enhancement of the Immune Response
440(2)
Some Practical Considerations
442(1)
Conclusion
443(1)
References
443