Muutke küpsiste eelistusi

E-raamat: Mathematical Modeling for Flow and Transport Through Porous Media

Guest editor , Guest editor , Guest editor
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401721998
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Mathematical Modeling for Flow and Transport Through Porous Media
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401721998
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The main aim of this paper is to present some new and general results, ap­ plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris­ ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre­ viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.
International Workshop on Mathematical Modeling for Flow and Transport
Through Porous Media.- Program.- Simulation of Multiphase Flows in Porous
Media.- Geometric Properties of Two Phase Flow in Geothermal Reservoirs.-
Numerical Simulation and Homogenization of Two-Phase Flow in Heterogeneous
Porous Media.- A Limit Form of the Equations for Immiscible Displacement in a
Fractured Reservoir.- Diffusion Models with Microstructure.- Characterization
of Porous Media Pore Level.- Scaling Mixing During Miscible Displacement in
Heterogeneous Porous Media.- Fixed Domain Methods for Free and Moving
Boundary Flows in Porous Media.- Qualitative Mathematical Analysis of the
Richards Equation.- Modeling of In-Situ Biorestoration of Organic Compounds
in Groundwater.- Reaction Kinetics and Transport in Soil: Compatibility and
Differences Between Some Simple Models.- A Perturbation Solution for
Nonlinear Solute Transport in Porous Media.- Trace Type Functional
Differential Equations and the Identification of Hydraulic Properties of
Porous Media.- Parameter Identification in a Soil with Constant Diffusivity.-
Key Word Index.