Muutke küpsiste eelistusi

E-raamat: Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion

Volume editor (Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milano, Italy), Volume editor (Dipartimento di Chimica, Materiali e Ing), Volume editor (Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milano, Italy)
  • Formaat - PDF+DRM
  • Hind: 266,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications.

  • Details thermochemical properties and "ab initio" calculations of elementary reaction rates
  • Details kinetic mechanisms of pyrolysis and combustion processes
  • Explains experimental data for improving reaction models and for kinetic mechanisms assessment
  • Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures
  • Describes pollutant formation in combustion systems
  • Solves and validates the kinetic mechanisms using numerical and statistical methods
  • Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces
  • Outlines large eddy simulation of turbulent reacting flows
Contributors xvii
Preface xxi
Introduction xxiii
Part I Kinetic Mechanisms
Chapter 1 Thermochemistry
3(112)
Branko Ruscic
David H. Bross
1 Introduction
3(3)
2 An overview of some relevant thermochemical conventions
6(12)
3 The expression of uncertainty in thermochemistry
18(3)
4 An overview of relevant thermochemical quantities
21(39)
5 A brief history of thermochemistry, and an overview of traditional tabulations
60(6)
6 A brief overview of theoretical approaches to thermochemistry
66(13)
7 Group additivity (GA) approach to thermochemistry
79(1)
8 Active Thermochemical Tables
80(3)
9 Representation of thermochemical parameters via polynomials
83(7)
10 Conclusions
90(1)
Acknowledgments
91(1)
References
91(24)
Chapter 2 Ab initio kinetics for pyrolysis and combustion systems
115(54)
Stephen J. Klippenstein
Carlo Cavallotti
1 Introduction
115(2)
2 AI electronic structure theory
117(7)
2.1 Single-reference methods
117(5)
2.2 Multireference methods
122(2)
3 Pressure-independent rate constants: Ab initio TST
124(23)
3.1 Radical-molecule reactions
124(19)
3.2 Radical-radical reactions
143(4)
4 Pressure-dependent rates: The master equation
147(6)
4.1 Collisional energy transfer
148(1)
4.2 Single-well single-channel reactions
149(1)
4.3 Multiple-well multiple-channel reactions
150(3)
5 Trajectory simulations for exothermic reactions
153(3)
6 Automation
156(4)
7 Conclusion
160(1)
Acknowledgments
161(1)
References
161(8)
Chapter 3 Shock tube techniques for kinetic target data to improve reaction models
169(34)
Shengkai Wang
David F. Davidson
Ronald K. Hanson
1 Introduction
169(1)
2 Principles of shock tube operation
170(2)
3 Data types of shock tube combustion measurements
172(3)
3.1 Ignition delay time
172(1)
3.2 Species time-history
173(1)
3.3 Fundamental reaction rate constants
173(2)
4 Recent advances in shock tube techniques
175(4)
4.1 Use of driver inserts to counteract nonidealities in real shock tubes
175(1)
4.2 Extending shock tube test times with tailoring and driver geometry
175(2)
4.3 Constrained-reaction-volume strategy to achieve near-constant-pressure test conditions throughout energetic reaction processes
177(2)
5 Diagnostic methods
179(14)
5.1 Classic methods
179(3)
5.2 Laser absorption spectroscopy
182(1)
5.3 Recent advances in laser absorption methodologies for shock tube kinetics studies
183(10)
6 Concluding remarks
193(1)
Acknowledgments
193(1)
References
193(10)
Chapter 4 Rate rules and reaction classes
203(56)
Kun Wang
Anthony M. Dean
1 Introduction
203(1)
2 Overview of rate rule development
204(4)
2.1 Estimates based on experimental data
204(1)
2.2 Estimates based on TST calculations
205(1)
2.3 Advantages of rate rules
206(2)
3 Rate rule assignments for various reaction classes
208(45)
3.1 Unimolecular reactions
208(25)
3.2 Bimolecular reactions
233(12)
3.3 Estimation of pressure-dependent rate constants
245(2)
3.4 Application of rate rules to estimate potential energy surfaces
247(6)
4 Concluding remarks
253(1)
References
254(5)
Chapter 5 Automatic generation of reaction mechanisms
259(36)
William H. Green
1 Automated generation of reaction mechanisms: Overview
259(3)
2 Basic operations in reaction mechanism generation
262(6)
2.1 Adding reactions using templates and recipes
262(2)
2.2 Sequential addition of reactions to expand a reaction mechanism
264(4)
3 A quantifiable goal of reaction mechanism generation
268(1)
4 Defining the errors in reaction mechanisms
269(7)
4.1 Good definitions of a species for kinetics
269(4)
4.2 Incompleteness of any reaction mechanism: Parameter error vs mechanism truncation error
273(3)
5 Termination and selection heuristics and criteria
276(8)
5.1 Termination criteria (knowing when a reaction mechanism is complete)
276(1)
5.2 Deciding which species to add next to a reaction mechanism
277(3)
5.3 Methods based on sequences of reaction steps, or overall reactions
280(4)
6 Refining a reaction mechanism to reduce overall error
284(3)
7 Keeping mechanisms manageable: Memory utilization during mechanism construction
287(2)
8 Different mechanisms for different reaction conditions
289(1)
9 Summary and conclusions
290(1)
Acknowledgments
290(1)
References
291(4)
Chapter 6 Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks
295(68)
Kevin Van Geem
1 Introduction
295(3)
2 Feedstocks
298(11)
2.1 Solid feeds
299(4)
2.2 Gaseous and liquid feeds
303(6)
3 Global kinetic models for pyrolysis
309(10)
3.1 Introduction
309(1)
3.2 Biomass pyrolysis global kinetic models
310(4)
3.3 Heat and mass transfer limitations
314(5)
4 Intrinsic kinetic models
319(24)
4.1 Biomass pyrolysis
319(5)
4.2 Polymer pyrolysis
324(7)
4.3 Pyrolysis of gaseous and liquids
331(12)
5 Conclusions
343(1)
References
344(19)
Chapter 7 Detailed kinetics of fossil and renewable fuel combustion
363(82)
Charles K. Westbrook
Henry J. Curran
1 Introduction
363(2)
2 Detailed chemical kinetic reaction mechanisms
365(2)
3 Core, small molecule kinetic mechanisms
367(15)
3.1 Hydrogen (H2) and carbon monoxide (CO)
367(5)
3.2 Methane (CH4), ethane (C2H6), and natural gas
372(3)
3.3 Comprehensive mechanisms and mechanism validation experiments
375(2)
3.4 Core kinetic mechanisms
377(2)
3.5 High-temperature kinetics
379(2)
3.6 Kinetic mechanism sizes
381(1)
4 Fuel classes
382(43)
4.1 Alkane fuels
382(6)
4.2 Low-temperature kinetics, cool flames, and negative temperature coefficients
388(6)
4.3 Branched alkane fuels
394(6)
4.4 Alcohol fuels
400(3)
4.5 Aromatic fuels
403(5)
4.6 Olefin fuels
408(3)
4.7 Cyclic paraffins
411(2)
4.8 Alkyl esters
413(5)
4.9 Furans
418(3)
4.10 Ketones
421(2)
4.11 Reaction flux analysis (rate of production analysis)
423(2)
5 Concluding remarks
425(1)
Acknowledgments
426(1)
References
426(17)
Further reading
443(2)
Chapter 8 Experiments for kinetic mechanism assessment
445(28)
Philippe Dagaut
1 Introduction
445(4)
2 Shock tubes and rapid compression machines
449(3)
2.1 Ignition data from ST and RCM
449(1)
2.2 Species measurements from ST and RCM
450(2)
3 Flow reactors: Tubular flow reactors and jet-stirred reactors
452(10)
3.1 Species measurements
452(8)
3.2 Ignition data from PFR
460(2)
4 Flames
462(5)
4.1 Burning velocities
462(2)
4.2 Species measurements
464(3)
5 Conclusions and perspectives
467(1)
References
467(6)
Chapter 9 Detailed feedstock characterization for pyrolysis process
473(40)
Eliseo Ranzi
Sauro Pierucci
Mario Dente
Marco van Goethem
Eric Wagner
1 Introduction
473(4)
2 Feed reconstruction and internal distribution parameters
477(8)
3 Pyrolysis mechanism and steady-state approximation of large alkyl radicals
485(4)
3.1 Steady-state approximation of large alkyl radicals
485(4)
4 Automatic generation of primary lumped reactions
489(10)
4.1 Vertical lumping
492(1)
4.2 Horizontal lumping
493(3)
4.3 Lumping of alkenes and intermediate components
496(3)
5 Model sensitivity to feedstock composition
499(6)
5.1 Model sensitivity to feed characterization. Kerosene pyrolysis
499(1)
5.2 Model sensitivity to methylation probability and isomer distribution
500(1)
5.3 Model sensitivity to refinery treatments. Reformed naphthas
501(4)
6 Conclusions
505(1)
Appendix: Predicted isomer distribution in branched C12H
H26
fraction
506(2)
References
508(3)
Further reading
511(2)
Chapter 10 Surrogate fuels and combustion characteristics of liquid transportation fuels
513(90)
Stephen Dooley
Sang Hee Won
Frederick L. Dryer
1 Introduction
513(8)
1.1 Chemical complexity and variability of liquid transportation fuels
514(1)
1.2 Definition and utility of surrogate fuels
515(3)
1.3 The historical approach to surrogate definition: Emulating the "molecular class composition"
518(2)
1.4 Surrogate formulation by property: Property matching protocols
520(1)
1.5 Preface for the following sections
521(1)
2 Liquid fuel combustion behaviors
521(22)
2.1 Gas-phase chemical reactivity
523(5)
2.2 Laminar flame characteristics
528(7)
2.3 Sooting propensity, smoke point, threshold sooting index, and soot yield index
535(5)
2.4 Physical properties in multiphase combustion
540(3)
3 Surrogate fuel formulation methodology
543(20)
3.1 Surrogate component selection
543(2)
3.2 Surrogate formulation methodology for prevaporized combustion behaviors
545(1)
3.3 A general theory of real fuel oxidation: The commonality of distinct chemical functionalities
546(2)
3.4 Surrogate formulation for prevaporized combustion behaviors by CPT similarity
548(1)
3.5 Derived cetane number (DCN): An indicator of chemical reactivity
549(3)
3.6 Experimental evaluation of surrogate formulation by CPT similarity
552(9)
3.7 Summary of performance of surrogate formulation by CPT similarity
561(2)
4 Analysis of surrogate fuel formulation by CPT similarity
563(27)
4.1 Fundamental underpinning of real fuel prevaporized combustion behaviors
563(5)
4.2 Chemical group additivity analysis
568(3)
4.3 Fundamental underpinning of chemical group additivity concept to real fuel combustion kinetics
571(5)
4.4 CPTs constraints for emulating a "model" real fuel composition
576(3)
4.5 The derived cetane number interpreted as an indicator of real fuel chemical structure
579(4)
4.6 Chemical functional group descriptors for ignition propensity of large hydrocarbon liquid fuels
583(4)
4.7 Surrogate fuel formulation by similarity to real fuel molecular fragment composition as determined by nuclear magnetic resonance spectroscopy
587(3)
5 Concluding remarks: Challenges and opportunities
590(2)
References
592(11)
Chapter 11 Detailed Kinetic Mechanisms of Pollutant Formation in Combustion Processes
603(44)
Peter Glarborg
1 Introduction
603(1)
2 Pollutants from combustion of clean fuels
603(9)
2.1 Pollutants from incomplete oxidation
605(1)
2.2 Formation of nitric oxide from fixation of N2
605(7)
3 Pollutants formed from fuel impurities
612(23)
3.1 Nitrogen oxides
613(5)
3.2 Sulfur oxides
618(12)
3.3 Chlorine
630(5)
4 Concluding remarks
635(1)
References
635(12)
Chapter 12 Detailed kinetic mechanisms of PAH and soot formation
647(28)
Andrea D'Anna
Mariano Sirignano
1 Introduction
647(1)
2 Experimental evidences for PAHs and soot formation
648(2)
3 PAH and soot formation kinetics
650(8)
3.1 Gas-phase chemistry and aromatic formation
652(3)
3.2 Gas-to-particle transition
655(2)
3.3 Particle growth mechanism
657(1)
3.4 Particle surface oxidation and oxidation-induced fragmentation
657(1)
4 Soot models
658(8)
4.1 Discrete sectional approach
659(4)
4.2 Moment method models
663(2)
4.3 Stochastic models
665(1)
5 Final remarks
666(1)
References
667(8)
Part II Numerical Methods and Model Validation
Chapter 13 Numerical modeling of reacting systems with detailed kinetic mechanisms
675(48)
Alberto Cuoci
1 Introduction
675(3)
2 Thermodynamics, transport properties, and kinetics
678(3)
2.1 Thermodynamics
678(1)
2.2 Transport properties
678(2)
2.3 Kinetics
680(1)
3 Ideal systems
681(4)
3.1 Batch reactor
682(1)
3.2 Plug flow reactor
682(1)
3.3 Perfectly stirred reactor
683(1)
3.4 Shock tube reactor
684(1)
3.5 Numerical solution of ideal systems
685(1)
4 1D systems
685(7)
4.1 Laminar premixed flat flames
685(2)
4.2 Laminar counter-flow diffusion flames
687(1)
4.3 Numerical solution
688(4)
5 Multidimensional systems
692(5)
5.1 Governing equations
692(1)
5.2 Operator-splitting approach
693(4)
6 Solution of stiff ODE systems
697(4)
6.1 Time-integration options: BDF vs extrapolation methods
698(1)
6.2 Evaluation of Jacobian: Numerical vs analytical methods
699(1)
6.3 Linear systems: Direct vs iterative methods
700(1)
6.4 Acceleration of numerical calculations
700(1)
7 Additional tools
701(4)
7.1 Rate of production analysis
701(1)
7.2 Reaction path analysis
701(1)
7.3 Sensitivity analysis
702(3)
8 Examples
705(11)
8.1 Thermodynamic, kinetic, and transport properties
705(3)
8.2 Stiff ODE solvers
708(2)
8.3 Sensitivity analysis
710(3)
8.4 Multidimensional laminar coflow flames
713(3)
9 Concluding remarks
716(1)
References
716(7)
Chapter 14 Uncertainty quantification and minimization
723(40)
Hai Wang
1 Introduction
723(3)
1.1 Uncertainty vs error
725(1)
1.2 Sources of uncertainty
725(1)
1.3 Model validation vs test
726(1)
2 Rate coefficient uncertainties
726(2)
3 Model UQ and rate uncertainty impact factor
728(8)
4 Response surfaces
736(4)
5 Combustion data uncertainties
740(3)
6 Uncertainty minimization
743(8)
7 Detecting target outliers
751(1)
8 Joint assessment of kinetic prediction uncertainties of hydrogen and small hydrocarbon chemistry
752(2)
9 Concluding remarks
754(2)
Acknowledgments
756(1)
References
756(7)
Chapter 15 Addressing the complexity of combustion kinetics: Data management and automatic model validation
763(36)
Matteo Pelucchi
Alessandro Stagni
Tiziano Faravelli
1 Models, data, and comparisons in combustion chemistry
763(2)
2 Trends and challenges in data management and automatic model development
765(14)
2.1 Data management: Open science cloud initiatives
765(1)
2.2 Current data repositories
766(1)
2.3 The unFAIRness of combustion data
767(5)
2.4 Preliminary architecture for efficient and automatic data management
772(1)
2.5 Automated model development
773(6)
3 Automated model validation
779(12)
3.1 Background
779(4)
3.2 Curve matching: A multifaceted approach to assessing model performance
783(5)
3.3 Example: Application to n-heptane mechanism
788(3)
4 Conclusions
791(1)
Acknowledgment
792(1)
References
792(7)
Chapter 16 Model reduction and lumping procedures
799(32)
Perrine Pepiot
Liming Cai
Heinz Pitsch
1 Introduction
799(2)
2 Elimination method
801(10)
2.1 Sensitivity analysis
802(2)
2.2 Reaction flux analysis
804(1)
2.3 Graph-based methods
805(6)
3 Chemical lumping method
811(2)
4 Dimension reduction techniques
813(1)
5 Integration into a multistage reduction strategy
814(4)
6 Adaptive chemistry
818(1)
7 Conclusions and future perspectives
819(2)
References
821(10)
Part III Industrial Applications
Chapter 17 Coil design for optimal ethylene yields
831(42)
Marco van Goethem
Peter Oud
Jelle-Gerard Wijnja
Rajaram Ramesh
1 Introduction
831(1)
2 An overview of cracking furnace design and operation
832(2)
2.1 Key considerations in furnace design and operation
832(2)
3 Cracking furnace description
834(5)
3.1 Process flow description
834(3)
3.2 Equipment details
837(2)
4 Radiant coil technology
839(16)
4.1 Historical background
839(2)
4.2 Radiant coil design
841(3)
4.3 Radiant coil technologies
844(7)
4.4 Impact on furnace capacity
851(2)
4.5 Structured radiant coil development program
853(2)
5 Triple-lane layout
855(8)
5.1 A refresher on heat radiation
855(2)
5.2 Heat flux and wall temperature in a dual-lane GK6 layout
857(1)
5.3 Triple-lane concept and its advantages
858(5)
6 SFT® technology
863(7)
6.1 SFT® heat transfer enhancement validation
864(2)
6.2 SFT® coking rate reduction validation
866(2)
6.3 Application of SFT® and its benefits
868(2)
7 Conclusions
870(1)
References
871(1)
Further reading
871(2)
Chapter 18 Model predictive control and dynamic real-time optimization of steam cracking units
873(26)
Francesco Rossi
Maurizio Rovaglio
Flavio Manenti
1 Introduction to model predictive control and dynamic real-time optimization
873(8)
1.1 Conventional optimization and control strategies for process management
874(2)
1.2 Conventional algorithms for model predictive control and DRTO
876(3)
1.3 Pros and cons of model predictive control and DRTO
879(2)
2 Mathematical formulation and numerical solution of model predictive control and DRTO problems
881(7)
2.1 Mathematical formulation of the optimization phase
881(3)
2.2 Sequential and simultaneous approaches to the solution of the optimization phase
884(4)
3 Latest developments in model predictive control and DRTO
888(1)
4 DRTO of steam cracking units
889(6)
4.1 Integration of existing software packages for modeling and (dynamic) real-time optimization purposes
890(1)
4.2 Model of the radiant section of the steam cracking furnace
891(2)
4.3 Results of the application of RTO and DRTO to the radiant section of the steam cracking furnace
893(2)
5 Conclusions
895(1)
Disclaimer
895(1)
References
895(4)
Chapter 19 Introducing chemical kinetics into Large Eddy Simulation of turbulent reacting flows
899(38)
Eleonore Riber
Benedicte Cuenot
Thierry Poinsot
1 Introduction
899(8)
2 A promising approach: Analytically reduced chemistry (ARC)
907(11)
2.1 Derivation and validation of ARC: Example of methane-air combustion
908(1)
2.2 Assessment of ARC in laminar canonical cases
909(2)
2.3 Assessment of ARC in LES of the Sandia turbulent jet flame D
911(7)
3 Toward ARC for real systems
918(5)
3.1 ARC for real fuels
918(2)
3.2 General trends for ARC for LES of turbulent combustion
920(1)
3.3 Coupling ARC with turbulent combustion models
921(2)
4 On the use of ARC in LES of complex geometries
923(8)
4.1 Pollutant emissions (CO and NOR) in an industrial methane-air gas turbine combustor
923(3)
4.2 Soot productions in an academic ethylene-air nonpremixed combustor
926(2)
4.3 Including real-fuel chemistry in turbulent spray flames
928(3)
5 Conclusions
931(1)
References
931(6)
Chapter 20 Burners for reformers and cracking furnaces
937(48)
Charles E. Baukal
Mark Vaccari
Michael G. Claxton
1 Introduction
937(1)
2 Furnaces
938(7)
2.1 Reforming heaters
938(4)
2.2 Cracking furnaces
942(3)
3 Burners
945(24)
3.1 Design
947(8)
3.2 Burner types
955(2)
3.3 Configuration (mounting and firing direction)
957(7)
3.4 Burners for reformers and cracking furnaces
964(5)
4 CFD for reformers and cracking furnaces
969(13)
4.1 Introduction
969(1)
4.2 Mathematical models
969(3)
4.3 Use in reformer applications
972(4)
4.4 Use in cracking furnaces
976(6)
5 Conclusions
982(1)
References
982(3)
Index 985
Tiziano Faravelli (Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano) is highly experienced in kinetics and computational fluid dynamics modeling. He also works on integration of lumped kinetic models in CFD codes for detailed studies of reactive environments. He is the author of more than 200 peer-reviewed papers on the topic and is the Leader of the CRECK Modeling Group at Politecnico di Milano (http://creckmodeling.chem.polimi.it). Flavio Manenti (Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano) is experienced in chemical process simulations for design and operational purposes. He developed AG2S technology for thermal conversion of CO2 and codeveloped BzzMath library. He is the author of peer-reviewed papers and books on the topic and is the President of the Computer Aided Process Engineering (CAPE) Working Party at the European Federation of Chemical Engineering. Eliseo Ranzi (Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano) is highly experienced in kinetic modeling of complex reaction systems, including pyrolysis, gasification, and combustion. He has authored many peer-reviewed papers on the topic. Notably, he also developed SPYRO package, which nowadays is commercialized by Pyrotec-Technip NL for industrial crackers.