Muutke küpsiste eelistusi

E-raamat: Mathematical Muffin Morsels: Nobody Wants A Small Piece

(Univ Of Maryland, Usa), (Univ Of Maryland, Usa), (Univ Of Maryland, Usa), (Univ Of Maryland, Usa)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 23,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Suppose you have five muffins that you want to divide and give to Alice, Bob, and Carol. You want each of them to get 5/3. You could cut each muffin into 1/3-1/3-1/3 and give each student five 1/3-sized pieces. But Alice objects! She has large hands! She wants everyone to have pieces larger than 1/3. Is there a way to divide five muffins for three students so that everyone gets 5/3, and all pieces are larger than 1/3? Spoiler alert: Yes! In fact, there is a division where the smallest piece is 5/12. Is there a better division? Spoiler alert: No. In this book we consider THE MUFFIN PROBLEM: what is the best way to divide up m muffins for s students so that everyone gets m/s muffins, with the smallest pieces maximized. We look at both procedures for the problem and proofs that these procedures are optimal. This problem takes us through much mathematics of interest, for example, combinatorics and optimization theory. However, the math is elementary enough for an advanced high school student.