Mathematical Principles of the Internet: Volume 1 |
|
|
|
xix | |
|
|
xxix | |
|
|
xxxvii | |
|
|
xxxix | |
|
|
1 | (100) |
|
|
3 | (1) |
|
|
4 | (3) |
|
1.3 Mutual Information and Relative Entropy |
|
|
7 | (4) |
|
|
7 | (2) |
|
|
9 | (2) |
|
1.4 Noiseless Coding for Memoryless Source |
|
|
11 | (4) |
|
1.4.1 Pair of Inequalities |
|
|
12 | (2) |
|
1.4.2 Shannon-Fano Coding Theorem |
|
|
14 | (1) |
|
|
15 | (17) |
|
|
16 | (5) |
|
|
21 | (5) |
|
|
26 | (6) |
|
1.6 Communication Channels |
|
|
32 | (12) |
|
1.6.1 Discrete Memoryless Channel |
|
|
32 | (2) |
|
|
34 | (1) |
|
1.6.3 Extension of a Discrete Memoryless Channel |
|
|
35 | (1) |
|
1.6.4 Basics of Coding and Decoding |
|
|
36 | (2) |
|
1.6.5 Noiseless Communication Channel Coding Theorem |
|
|
38 | (3) |
|
1.6.6 Noisy Communication Channel Coding Theorem |
|
|
41 | (3) |
|
1.7 Differential Entropy and Capacity of Communication Channels |
|
|
44 | (8) |
|
1.7.1 Differential Entropy |
|
|
44 | (4) |
|
1.7.2 Information Capacity Theorem |
|
|
48 | (3) |
|
1.7.3 Parallel Gaussian-Noise Communication Channels |
|
|
51 | (1) |
|
1.8 Rate Distortion Theory |
|
|
52 | (14) |
|
|
52 | (1) |
|
1.8.2 Rate Distortion Function |
|
|
53 | (2) |
|
1.8.3 Properties of Rate Distortion Function |
|
|
55 | (3) |
|
1.8.4 Representation of Independent Gaussian Random Variables |
|
|
58 | (3) |
|
1.8.5 Computation of Rate Distortion Function |
|
|
61 | (5) |
|
1.9 Network Information Theory |
|
|
66 | (3) |
|
1.9.1 Multi-access Gaussian Communication Channel |
|
|
66 | (1) |
|
1.9.2 Gaussian Broadcast Channels |
|
|
67 | (2) |
|
1.10 Maximum Entropy Principle |
|
|
69 | (4) |
|
1.10.1 Maximum-Likelihood Estimation |
|
|
69 | (1) |
|
1.10.2 Maximum Entropy Estimation |
|
|
70 | (3) |
|
|
73 | (1) |
|
|
74 | (23) |
|
|
97 | (4) |
|
2 Algebraic Coding Theory |
|
|
101 | (72) |
|
|
103 | (2) |
|
2.2 Basics of Coding Theory |
|
|
105 | (7) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
|
2.2.6 Error Probabilities |
|
|
111 | (1) |
|
2.3 Vector Spaces over Binary Field |
|
|
112 | (1) |
|
|
113 | (8) |
|
2.4.1 Basics of Linear Codes |
|
|
114 | (4) |
|
2.4.2 Minimum-Distance Decoding |
|
|
118 | (3) |
|
|
121 | (5) |
|
2.5.1 Basics of Cyclic Codes |
|
|
121 | (2) |
|
2.5.2 Check Polynomial and Parity-Check Matrix |
|
|
123 | (1) |
|
2.5.3 Encoding and Decoding Process |
|
|
124 | (2) |
|
|
126 | (4) |
|
2.6.1 Basics of Hamming Codes |
|
|
126 | (2) |
|
2.6.2 Hamming Codes via Cyclic Codes |
|
|
128 | (2) |
|
2.7 Cyclic Redundancy Check Codes |
|
|
130 | (2) |
|
|
132 | (5) |
|
2.9 Bose-Chaudhuri-Hocquenghem Codes |
|
|
137 | (10) |
|
|
139 | (2) |
|
2.9.2 Decoding of BCH Codes |
|
|
141 | (6) |
|
|
147 | (2) |
|
|
149 | (15) |
|
2.11.1 Polynomial Representation |
|
|
150 | (3) |
|
2.11.2 Error-Correction and Distance Measures |
|
|
153 | (1) |
|
2.11.3 Matrix Representation |
|
|
154 | (2) |
|
2.11.4 Wyner-Ash Convolutional Codes |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
158 | (6) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (6) |
|
|
171 | (2) |
|
|
173 | (76) |
|
|
175 | (3) |
|
3.2 Some Classical Ciphering Schemes |
|
|
178 | (6) |
|
|
178 | (1) |
|
3.2.2 The Affine Cryptosystem |
|
|
179 | (1) |
|
3.2.3 A Polyalphabetic Cipher |
|
|
180 | (2) |
|
|
182 | (1) |
|
3.2.5 The Permutation Cipher |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
3.4 Information-Theoretic Cryptanalysis |
|
|
185 | (7) |
|
3.4.1 Probabilistic Cryptosystem |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (1) |
|
3.4.4 Combination of Cryptosystems |
|
|
188 | (1) |
|
|
189 | (3) |
|
3.5 Public-Key Cryptography |
|
|
192 | (7) |
|
3.5.1 The RSA Cryptosystem |
|
|
193 | (4) |
|
3.5.2 The El Gamal Cryptosystem |
|
|
197 | (2) |
|
3.6 Probabilistic Encryption |
|
|
199 | (4) |
|
3.7 Homomorphic Encryption |
|
|
203 | (4) |
|
|
204 | (1) |
|
3.7.2 Algebraic Homomorphism |
|
|
204 | (1) |
|
3.7.3 Homomorphic Cryptosystems |
|
|
205 | (2) |
|
|
207 | (4) |
|
3.8.1 The RSA Signature Scheme |
|
|
208 | (1) |
|
3.8.2 The El Gamal Signature Scheme |
|
|
209 | (2) |
|
|
211 | (1) |
|
3.10 Elliptic Curve Based Cryptosystems |
|
|
212 | (6) |
|
3.10.1 Elliptic Curve Based El Gamal Cryptosystem |
|
|
213 | (2) |
|
3.10.2 Menezes-Vanstone Elliptic Curve Cryptosystem |
|
|
215 | (2) |
|
3.10.3 Elliptic Curve Based Key Exchange Algorithm |
|
|
217 | (1) |
|
3.11 Hyperelliptic Curve Based Cryptosystem |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
221 | (3) |
|
|
221 | (2) |
|
3.13.2 Message Authentication |
|
|
223 | (1) |
|
3.14 The Data Encryption Standard |
|
|
224 | (5) |
|
|
224 | (3) |
|
3.14.2 Modes of Operation of DES |
|
|
227 | (2) |
|
3.15 The Advanced Encryption Standard |
|
|
229 | (7) |
|
3.15.1 Arithmetic Used in AES |
|
|
229 | (2) |
|
|
231 | (1) |
|
|
232 | (4) |
|
3.16 Probabilistic Perspective on Cryptographic Security |
|
|
236 | (6) |
|
3.16.1 Basics of Probabilistic Security |
|
|
236 | (3) |
|
3.16.2 Security of a Symmetric-Key Cryptosystem |
|
|
239 | (2) |
|
3.16.3 Security of an Asymmetric-Key Cryptosystem |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (2) |
|
|
245 | (4) |
|
|
249 | (52) |
|
|
251 | (2) |
|
4.2 Self-Similarity in the LAN and Internet Traffic |
|
|
253 | (1) |
|
4.2.1 Self-Similarity in the LAN Traffic |
|
|
253 | (1) |
|
4.2.2 Self-Similarity in the Internet Traffic |
|
|
254 | (1) |
|
4.3 Power-Law Probability Distributions |
|
|
254 | (2) |
|
4.3.1 Pareto Distribution |
|
|
255 | (1) |
|
|
255 | (1) |
|
4.4 Modeling Highly Variable Measurements |
|
|
256 | (3) |
|
4.4.1 Heavy-Tailed Distributions |
|
|
256 | (2) |
|
4.4.2 Properties of Power-Law-Tailed Distributions |
|
|
258 | (1) |
|
4.5 Internet Traffic Modeling |
|
|
259 | (9) |
|
4.5.1 Self-Similar Processes |
|
|
259 | (1) |
|
4.5.2 Fractional Brownian Motion |
|
|
260 | (4) |
|
4.5.3 Second Order Self-Similarity |
|
|
264 | (2) |
|
4.5.4 Self-Similarity and the Hurst's Law |
|
|
266 | (1) |
|
4.5.5 Estimation of the Hurst Parameter |
|
|
266 | (2) |
|
4.6 Explanation of Self-Similarity in the Internet Traffic |
|
|
268 | (6) |
|
4.6.1 Notation and Assumptions |
|
|
268 | (1) |
|
4.6.2 Single Source Characterization |
|
|
269 | (3) |
|
4.6.3 Multiple Source Characterization |
|
|
272 | (2) |
|
4.7 Asymptotic Analysis of the R/S Statistic |
|
|
274 | (4) |
|
4.8 Transform Analysis of Fractional Brownian Motion |
|
|
278 | (4) |
|
4.8.1 Power Spectrum of the Increment of a FBMP |
|
|
278 | (1) |
|
4.8.2 Wigner-Ville Transform Technique |
|
|
279 | (1) |
|
4.8.3 Continuous Wavelet Transform Technique |
|
|
279 | (2) |
|
4.8.4 Discrete Wavelet Transform Technique |
|
|
281 | (1) |
|
4.9 Internet Traffic Modeling via Chaotic Maps |
|
|
282 | (9) |
|
|
284 | (4) |
|
4.9.2 Sojourn Time Probability |
|
|
288 | (1) |
|
4.9.3 Asymptotic Spectral Analysis |
|
|
289 | (2) |
|
|
291 | (1) |
|
|
291 | (7) |
|
|
298 | (3) |
|
5 Dynamics, Control, and Management of Internet Congestion |
|
|
301 | (94) |
|
|
303 | (2) |
|
5.2 Congestion Control and Resource Allocation |
|
|
305 | (2) |
|
|
307 | (1) |
|
5.4 The Transmission Control and Internet Protocols |
|
|
308 | (4) |
|
5.4.1 Transmission Control Protocol |
|
|
308 | (3) |
|
5.4.2 User Datagram Protocol |
|
|
311 | (1) |
|
|
311 | (1) |
|
5.5 A Simple Periodic TCP Model |
|
|
312 | (2) |
|
|
314 | (8) |
|
5.6.1 Passive Queue Management |
|
|
314 | (1) |
|
5.6.2 Active Queue Management |
|
|
315 | (1) |
|
5.6.3 Random Early Detection |
|
|
315 | (7) |
|
5.7 A Mean-Field Model of Multiple TCP/IP Connections |
|
|
322 | (5) |
|
5.7.1 Window-Size Evolution |
|
|
323 | (1) |
|
5.7.2 Differential Equation of the Queue Size |
|
|
324 | (1) |
|
5.7.3 Window-Size Probability Density Function |
|
|
325 | (1) |
|
5.7.4 Analysis of Stable System |
|
|
325 | (2) |
|
5.8 Traffic Rate, Congestion Management, and Stability |
|
|
327 | (11) |
|
5.8.1 Traffic Rate Control and Fairness |
|
|
328 | (4) |
|
5.8.2 Congestion Control via Feedback and Its Stability |
|
|
332 | (3) |
|
5.8.3 Max-Min Fair Algorithms |
|
|
335 | (3) |
|
5.9 Traffic Management via Packet Scheduling and Regulation |
|
|
338 | (4) |
|
5.9.1 Generalized Processor Sharing |
|
|
339 | (1) |
|
5.9.2 Packetized Generalized Processor Sharing Scheme |
|
|
340 | (1) |
|
5.9.3 Leaky Bucket for Traffic Regulation |
|
|
341 | (1) |
|
|
342 | (6) |
|
5.10.1 Mathematical Preliminaries |
|
|
343 | (2) |
|
|
345 | (1) |
|
5.10.3 Fundamental Bounds |
|
|
346 | (2) |
|
5.11 Multiple Access of Communicating Medium |
|
|
348 | (9) |
|
5.11.1 Medium Access Control Techniques |
|
|
348 | (6) |
|
|
354 | (2) |
|
|
356 | (1) |
|
5.12 Stochastic Geometry of Wireless Networks |
|
|
357 | (15) |
|
5.12.1 Basics of Wireless Technology |
|
|
357 | (3) |
|
5.12.2 Preliminaries on Stochastic Modeling |
|
|
360 | (2) |
|
5.12.3 Interference Model |
|
|
362 | (4) |
|
5.12.4 A Combination Model for Path Loss and Fading |
|
|
366 | (2) |
|
5.12.5 Outage Probability |
|
|
368 | (1) |
|
5.12.6 Transmission Capacity |
|
|
369 | (3) |
|
|
372 | (1) |
|
|
373 | (18) |
|
|
391 | (4) |
|
|
395 | (74) |
|
|
397 | (1) |
|
6.2 Terminology and Notation |
|
|
398 | (3) |
|
|
401 | (1) |
|
6.4 Steady-State Probabilities |
|
|
402 | (2) |
|
6.5 Birth-and-Death Process Based Queueing Systems |
|
|
404 | (11) |
|
6.5.1 Exponentially Distributed Random Variable |
|
|
404 | (1) |
|
6.5.2 Birth-and-Death Process Description of a Queue |
|
|
405 | (1) |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (2) |
|
|
410 | (2) |
|
|
412 | (2) |
|
|
414 | (1) |
|
|
415 | (20) |
|
|
416 | (1) |
|
|
416 | (5) |
|
|
421 | (6) |
|
|
427 | (3) |
|
|
430 | (5) |
|
6.7 Priority Queueing Systems |
|
|
435 | (3) |
|
6.7.1 Single Server Nonpreemptive Priorities |
|
|
436 | (2) |
|
6.7.2 Multiserver Nonpreemptive Priorities |
|
|
438 | (1) |
|
|
438 | (6) |
|
6.8.1 Open Queueing Networks |
|
|
439 | (1) |
|
6.8.2 Closed Queueing Networks |
|
|
440 | (4) |
|
6.9 Bounds and Approximations |
|
|
444 | (6) |
|
6.9.1 Heavy Traffic Approximations |
|
|
444 | (2) |
|
6.9.2 Approximations for Multiserver Queues |
|
|
446 | (1) |
|
|
447 | (1) |
|
6.9.4 Diffusion Approximation |
|
|
448 | (2) |
|
6.10 Application of Large Deviation Techniques |
|
|
450 | (8) |
|
6.10.1 Theory of Effective Bandwidths |
|
|
451 | (4) |
|
6.10.2 Queue with Large Buffer |
|
|
455 | (3) |
|
|
458 | (1) |
|
|
458 | (9) |
|
|
467 | (2) |
|
7 Stochastic Structure of the Internet and the World Wide Web |
|
|
469 | (98) |
|
|
471 | (1) |
|
7.2 Metrics to Characterize Random Graphs |
|
|
472 | (1) |
|
7.3 Experimental Evidence |
|
|
473 | (4) |
|
7.3.1 Macroscopic Structure of the World Wide Web |
|
|
475 | (1) |
|
7.3.2 A Kappa-shell Decomposition of the Internet Topology |
|
|
475 | (2) |
|
7.4 Some Important Metrics Revisited |
|
|
477 | (5) |
|
7.4.1 Degree Distribution |
|
|
477 | (3) |
|
7.4.2 Clustering Coefficient |
|
|
480 | (2) |
|
|
482 | (1) |
|
7.5 Classical Random Graph Theory |
|
|
482 | (4) |
|
7.6 Study of Random Graphs via z-Transforms |
|
|
486 | (7) |
|
|
486 | (1) |
|
7.6.2 Average Path Length |
|
|
487 | (1) |
|
7.6.3 Clustering Coefficient of the Random Graph |
|
|
488 | (1) |
|
7.6.4 Distribution of Component Sizes |
|
|
488 | (2) |
|
|
490 | (3) |
|
7.7 The Kappa-core of a Random Graph |
|
|
493 | (6) |
|
|
499 | (2) |
|
7.8.1 Graph with Poissonian Degree Distribution |
|
|
499 | (1) |
|
7.8.2 Graph with Power-Law Degree Distribution |
|
|
500 | (1) |
|
|
501 | (3) |
|
7.10 Network Evolution Models |
|
|
504 | (10) |
|
7.10.1 Barabasi and Albert Model |
|
|
505 | (2) |
|
7.10.2 A Variant of the Barabasi and Albert Model |
|
|
507 | (1) |
|
7.10.3 A Generalization of Barabasi and Albert Model |
|
|
508 | (2) |
|
7.10.4 Intrinsic Vertex Weight Model |
|
|
510 | (3) |
|
7.10.5 Web Graph Evolution Model |
|
|
513 | (1) |
|
7.11 Hyperbolic Geometry of Networks |
|
|
514 | (8) |
|
7.11.1 Relevant Hyperbolic Geometry |
|
|
514 | (1) |
|
7.11.2 Modeling Complex Networks |
|
|
515 | (4) |
|
7.11.3 Popularity-Similarity Network Dynamics |
|
|
519 | (3) |
|
7.12 Search Techniques on Networks |
|
|
522 | (9) |
|
7.12.1 Application of SVD Techniques |
|
|
523 | (1) |
|
7.12.2 Detailed Network Search |
|
|
524 | (5) |
|
7.12.3 Random and Guided Search on the Network |
|
|
529 | (2) |
|
7.13 Virus Epidemics and Immunization in the Internet |
|
|
531 | (5) |
|
7.13.1 A Model of Spread of Epidemic |
|
|
531 | (4) |
|
7.13.2 Immunization Process |
|
|
535 | (1) |
|
7.14 Error and Attack Tolerance of Networks |
|
|
536 | (4) |
|
|
537 | (1) |
|
|
538 | (2) |
|
7.15 Congestion in a Stochastic Network |
|
|
540 | (2) |
|
7.15.1 Network with Equally-Busy Nodes |
|
|
541 | (1) |
|
7.15.2 Scale-Free Networks |
|
|
541 | (1) |
|
7.16 Exponential Random Graph Models |
|
|
542 | (4) |
|
|
546 | (1) |
|
|
547 | (14) |
|
|
561 | (6) |
|
8 Graph-Theoretic Algorithms |
|
|
567 | (100) |
|
|
569 | (1) |
|
8.2 Shortest Path Algorithms |
|
|
569 | (9) |
|
8.2.1 Bellman-Ford Shortest Path Algorithm |
|
|
570 | (1) |
|
8.2.2 Dijkstra's Shortest Path Algorithm |
|
|
571 | (3) |
|
8.2.3 All-Pairs Shortest Path Algorithms |
|
|
574 | (4) |
|
8.3 Special Path Algorithms |
|
|
578 | (11) |
|
8.3.1 K Shortest Paths Algorithm |
|
|
578 | (2) |
|
8.3.2 Routing with Transit-Times and Constraints |
|
|
580 | (4) |
|
8.3.3 Disjoint Paths Algorithm |
|
|
584 | (5) |
|
8.4 Algebraic Path Techniques |
|
|
589 | (8) |
|
8.4.1 Semirings and Dioids |
|
|
589 | (3) |
|
|
592 | (2) |
|
|
594 | (3) |
|
8.5 Geographic Routing in Hyperbolic Space |
|
|
597 | (5) |
|
|
597 | (1) |
|
8.5.2 Applicable Hyperbolic Geometry |
|
|
598 | (3) |
|
8.5.3 Greedy Embedding in Hyperbolic Space |
|
|
601 | (1) |
|
8.6 Minimum Spanning Tree Algorithms |
|
|
602 | (5) |
|
|
604 | (1) |
|
8.6.2 Kruskal's Algorithm |
|
|
605 | (2) |
|
8.7 Connectivity of a Graph |
|
|
607 | (2) |
|
|
609 | (8) |
|
8.8.1 Access Network Reliability |
|
|
610 | (2) |
|
8.8.2 Mesh Network Reliability |
|
|
612 | (5) |
|
8.9 Maximum Flows and Minimum Cost Flows |
|
|
617 | (20) |
|
|
618 | (10) |
|
|
628 | (9) |
|
|
637 | (14) |
|
8.10.1 A Communication Network Model |
|
|
640 | (1) |
|
8.10.2 Linear Network Coding |
|
|
641 | (3) |
|
8.10.3 Properties of Linear Network Coding |
|
|
644 | (2) |
|
8.10.4 Throughput Improvement |
|
|
646 | (5) |
|
8.11 Design of Communication Networks |
|
|
651 | (3) |
|
|
654 | (1) |
|
|
654 | (9) |
|
|
663 | (4) |
|
9 Game Theory and the Internet |
|
|
667 | (68) |
|
|
669 | (1) |
|
|
670 | (31) |
|
|
671 | (1) |
|
9.2.2 Strategic-Form Games |
|
|
672 | (18) |
|
9.2.3 Extensive-Form Games |
|
|
690 | (7) |
|
|
697 | (4) |
|
|
701 | (10) |
|
|
701 | (2) |
|
|
703 | (6) |
|
9.3.3 Technique to Reduce the Price of Anarchy |
|
|
709 | (2) |
|
9.4 A Selfish Task Allocation Model |
|
|
711 | (5) |
|
|
716 | (1) |
|
9.6 Algorithmic Mechanism Design |
|
|
717 | (6) |
|
|
718 | (2) |
|
9.6.2 Vickrey-Groves-Clarke Mechanism |
|
|
720 | (1) |
|
|
721 | (2) |
|
|
723 | (1) |
|
|
724 | (7) |
|
|
731 | (4) |
|
|
735 | (44) |
|
|
737 | (1) |
|
|
738 | (1) |
|
10.3 Internet Technology, Costs, and Pricing |
|
|
738 | (2) |
|
10.4 A Qualitative Economic Model of the Internet |
|
|
740 | (1) |
|
10.5 Network Resources, Congestion, and Pricing |
|
|
741 | (4) |
|
10.5.1 Social Welfare and Capacity |
|
|
741 | (1) |
|
10.5.2 Competitive Market Pricing |
|
|
742 | (3) |
|
10.5.3 Pricing without Usage Fees |
|
|
745 | (1) |
|
10.6 Service Differentiation |
|
|
745 | (3) |
|
10.7 Time-Dependent Pricing and Bandwidth Trade-Off |
|
|
748 | (3) |
|
|
748 | (1) |
|
10.7.2 Nash Equilibrium of the Game |
|
|
749 | (1) |
|
10.7.3 Social Welfare Function |
|
|
750 | (1) |
|
10.7.4 Revenue Maximization |
|
|
751 | (1) |
|
|
751 | (5) |
|
|
752 | (1) |
|
10.8.2 Generalized Vickrey Auction |
|
|
753 | (3) |
|
10.9 Application of Coalitional Game Theory |
|
|
756 | (8) |
|
10.9.1 Basics of Coalitional Game Theory |
|
|
756 | (5) |
|
|
761 | (3) |
|
|
764 | (3) |
|
|
767 | (1) |
|
|
767 | (9) |
|
|
776 | (3) |
|
11 Data Mining and Knowledge Discovery |
|
|
779 | (148) |
|
|
781 | (1) |
|
11.2 Basics of Knowledge Discovery Process and Data Mining |
|
|
782 | (6) |
|
11.2.1 Knowledge Discovery Process |
|
|
782 | (1) |
|
11.2.2 Elements of Data Mining |
|
|
783 | (3) |
|
11.2.3 Data Mining as a Learning Process |
|
|
786 | (2) |
|
|
788 | (16) |
|
11.3.1 Proximity Measures |
|
|
790 | (2) |
|
11.3.2 m-Means Clustering |
|
|
792 | (2) |
|
11.3.3 Hierarchical Clustering |
|
|
794 | (1) |
|
11.3.4 Model-Based Clustering |
|
|
795 | (5) |
|
|
800 | (2) |
|
11.3.6 Cluster Validity Measures |
|
|
802 | (2) |
|
11.4 Association Rules and Sequential Pattern Mining |
|
|
804 | (15) |
|
11.4.1 Basic Concepts of Association Rules |
|
|
805 | (2) |
|
11.4.2 Necessity of an Efficient Algorithm |
|
|
807 | (1) |
|
11.4.3 The Apriori Algorithm |
|
|
808 | (8) |
|
11.4.4 Sequential Pattern Mining |
|
|
816 | (3) |
|
11.5 Metric Classification |
|
|
819 | (21) |
|
11.5.1 Bayesian Classifier |
|
|
820 | (3) |
|
11.5.2 Support Vector Machines |
|
|
823 | (7) |
|
11.5.3 Nearest-Neighbor Classification |
|
|
830 | (1) |
|
11.5.4 Artificial Neural Network |
|
|
831 | (9) |
|
11.6 Nonmetric Classification |
|
|
840 | (10) |
|
11.6.1 Decision Tree Induction |
|
|
841 | (4) |
|
11.6.2 Rule-Based Induction |
|
|
845 | (5) |
|
11.7 Classification via Ensemble Methods |
|
|
850 | (6) |
|
|
851 | (1) |
|
|
852 | (4) |
|
|
856 | (13) |
|
|
856 | (4) |
|
|
860 | (5) |
|
|
865 | (2) |
|
|
867 | (2) |
|
11.9 High-Dimensional Data |
|
|
869 | (2) |
|
11.10 Statistical Techniques |
|
|
871 | (3) |
|
11.10.1 Prediction via Regression Analysis |
|
|
871 | (2) |
|
11.10.2 Principal Component Analysis |
|
|
873 | (1) |
|
11.11 Social Network Analysis |
|
|
874 | (12) |
|
|
874 | (4) |
|
11.11.2 Node-Group Centrality |
|
|
878 | (1) |
|
|
879 | (2) |
|
11.11.4 Linking Structure |
|
|
881 | (1) |
|
11.11.5 Community Detection |
|
|
882 | (4) |
|
11.12 Hidden Markov Model |
|
|
886 | (14) |
|
11.12.1 Model Description and the Problems |
|
|
886 | (3) |
|
11.12.2 Probability Evaluation |
|
|
889 | (3) |
|
11.12.3 Decoding of State Sequence |
|
|
892 | (1) |
|
|
893 | (7) |
|
|
900 | (9) |
|
11.13.1 Stochastic Dynamical System |
|
|
901 | (1) |
|
|
902 | (4) |
|
11.13.3 A Probabilistic Perspective on Kalman Filtering |
|
|
906 | (3) |
|
|
909 | (1) |
|
|
910 | (12) |
|
|
922 | (5) |
|
12 Quantum Computation, Communication, and Cryptography |
|
|
927 | (78) |
|
|
929 | (1) |
|
|
930 | (12) |
|
|
930 | (3) |
|
12.2.2 Pure and Mixed States, and Density Operator |
|
|
933 | (4) |
|
12.2.3 Evolution of a Quantum System |
|
|
937 | (1) |
|
|
938 | (1) |
|
12.2.5 Postulates of Quantum Mechanics |
|
|
939 | (1) |
|
12.2.6 Heisenberg's Uncertainty Principle |
|
|
940 | (1) |
|
12.2.7 Quantum Operations |
|
|
940 | (2) |
|
12.2.8 Quantum Entanglement |
|
|
942 | (1) |
|
12.3 Quantum Computing Elements |
|
|
942 | (6) |
|
12.3.1 Boolean Gates and Circuits |
|
|
942 | (2) |
|
12.3.2 Quantum Bits and Registers |
|
|
944 | (1) |
|
12.3.3 Quantum Gates and Circuits |
|
|
945 | (3) |
|
12.3.4 No-Cloning Theorem |
|
|
948 | (1) |
|
12.4 What is Quantum Computation? |
|
|
948 | (1) |
|
12.5 Models of Computation |
|
|
949 | (9) |
|
12.5.1 Deterministic Turing Machine |
|
|
950 | (4) |
|
12.5.2 Nondeterministic Turing Machine |
|
|
954 | (1) |
|
12.5.3 Probabilistic Turing Machine |
|
|
955 | (2) |
|
12.5.4 Quantum Turing Machine |
|
|
957 | (1) |
|
|
958 | (14) |
|
12.6.1 Deutsch's Problem and Algorithm |
|
|
959 | (2) |
|
12.6.2 Deutsch-Josza's Problem and Algorithm |
|
|
961 | (2) |
|
12.6.3 Shor's Factorization Algorithm |
|
|
963 | (5) |
|
12.6.4 Grover's Search Algorithm |
|
|
968 | (4) |
|
12.7 Quantum Information Theory |
|
|
972 | (3) |
|
12.8 Quantum Communication Theory |
|
|
975 | (4) |
|
|
975 | (1) |
|
|
976 | (1) |
|
|
977 | (2) |
|
12.8.4 Schumacher's Noiseless Channel Coding Theorem |
|
|
979 | (1) |
|
12.9 Quantum Error-Correction |
|
|
979 | (6) |
|
12.9.1 Difficulties Encountered |
|
|
980 | (1) |
|
|
980 | (1) |
|
12.9.3 Basics of Quantum Error-Correction |
|
|
981 | (3) |
|
12.9.4 A Bound on Quantum Error-Correcting Codes |
|
|
984 | (1) |
|
12.9.5 Shor's Nine-Qubit Code |
|
|
984 | (1) |
|
12.9.6 Barenco's Three-Qubit Code |
|
|
985 | (1) |
|
12.10 Quantum Cryptography |
|
|
985 | (7) |
|
12.10.1 Classical Cryptographic Communication |
|
|
985 | (1) |
|
12.10.2 Modern Cryptographic Communication |
|
|
986 | (1) |
|
12.10.3 Quantum Cryptographic Communication |
|
|
986 | (6) |
|
|
992 | (1) |
|
|
992 | (10) |
|
|
1002 | (3) |
|
|
1005 | |
Mathematical Principles of the Internet: Volume 2 |
|
|
|
xv | |
|
|
xxv | |
|
|
xxxiii | |
|
|
1 | (44) |
|
|
3 | (1) |
|
|
3 | (5) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (4) |
|
|
8 | (1) |
|
1.3.2 Permutation Mappings |
|
|
9 | (1) |
|
1.3.3 Permutation Matrices |
|
|
10 | (1) |
|
1.3.4 Unary and Binary Operations |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.4 Basic Number-Theoretic Concepts |
|
|
12 | (8) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.4.4 Greatest Common Divisor |
|
|
13 | (4) |
|
1.4.5 Continued Fractions |
|
|
17 | (3) |
|
1.5 Congruence Arithmetic |
|
|
20 | (13) |
|
1.5.1 Chinese Remainder Theorem |
|
|
23 | (1) |
|
|
24 | (2) |
|
1.5.3 Euler's Phi-Function |
|
|
26 | (2) |
|
|
28 | (2) |
|
|
30 | (2) |
|
|
32 | (1) |
|
1.6 Cyclotomic Polynomials |
|
|
33 | (2) |
|
|
35 | (2) |
|
1.7.1 Principle of Inclusion and Exclusion |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (5) |
|
|
42 | (3) |
|
|
45 | (90) |
|
|
47 | (1) |
|
|
47 | (16) |
|
|
48 | (4) |
|
|
52 | (1) |
|
2.2.3 Subrings and Ideals |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (5) |
|
|
62 | (1) |
|
|
63 | (3) |
|
2.4 Vector Spaces over Fields |
|
|
66 | (4) |
|
|
70 | (1) |
|
2.6 Structure of Finite Fields |
|
|
71 | (15) |
|
|
73 | (3) |
|
2.6.2 Minimal Polynomials |
|
|
76 | (3) |
|
2.6.3 Irreducible Polynomials |
|
|
79 | (1) |
|
2.6.4 Factoring Polynomials |
|
|
80 | (1) |
|
|
81 | (5) |
|
2.7 Roots of Unity in Finite Field |
|
|
86 | (1) |
|
|
87 | (13) |
|
2.8.1 Elliptic Curves over Real Fields |
|
|
90 | (5) |
|
2.8.2 Elliptic Curves over Finite Fields |
|
|
95 | (1) |
|
2.8.3 Elliptic Curves over Zp, p > 3 |
|
|
96 | (3) |
|
2.8.4 Elliptic Curves over GF2n |
|
|
99 | (1) |
|
|
100 | (17) |
|
2.9.1 Basics of Hyperelliptic Curves |
|
|
100 | (2) |
|
2.9.2 Polynomials, Rational Functions, Zeros, and Poles |
|
|
102 | (3) |
|
|
105 | (6) |
|
2.9.4 Mumford Representation of Divisors |
|
|
111 | (6) |
|
2.9.5 Order of the Jacobian |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (14) |
|
|
132 | (3) |
|
3 Matrices and Determinants |
|
|
135 | (68) |
|
|
137 | (1) |
|
|
137 | (7) |
|
3.2.1 Basic Matrix Operations |
|
|
139 | (1) |
|
3.2.2 Different Types of Matrices |
|
|
140 | (2) |
|
|
142 | (2) |
|
|
144 | (4) |
|
|
144 | (2) |
|
3.3.2 Vandermonde Determinant |
|
|
146 | (1) |
|
3.3.3 Binet-Cauchy Theorem |
|
|
146 | (2) |
|
|
148 | (4) |
|
|
148 | (1) |
|
3.4.2 Adjoint of a Square Matrix |
|
|
149 | (1) |
|
3.4.3 Nullity of a Matrix |
|
|
149 | (1) |
|
3.4.4 System of Linear Equations |
|
|
150 | (1) |
|
3.4.5 Matrix Inversion Lemma |
|
|
151 | (1) |
|
3.4.6 Tensor Product of Matrices |
|
|
151 | (1) |
|
3.5 Matrices as Linear Transformations |
|
|
152 | (3) |
|
3.6 Spectral Analysis of Matrices |
|
|
155 | (3) |
|
3.7 Hermitian Matrices and Their Eigenstructures |
|
|
158 | (3) |
|
3.8 Perron-Frobenius Theory |
|
|
161 | (4) |
|
|
162 | (1) |
|
3.8.2 Nonnegative Matrices |
|
|
163 | (2) |
|
3.8.3 Stochastic Matrices |
|
|
165 | (1) |
|
3.9 Singular Value Decomposition |
|
|
165 | (3) |
|
|
168 | (3) |
|
|
171 | (6) |
|
3.11.1 Gaussian Orthogonal Ensemble |
|
|
171 | (2) |
|
3.11.2 Wigner's Semicircle Law |
|
|
173 | (4) |
|
|
177 | (1) |
|
|
177 | (24) |
|
|
201 | (2) |
|
|
203 | (40) |
|
|
205 | (1) |
|
4.2 Undirected and Directed Graphs |
|
|
205 | (4) |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (2) |
|
4.4 Graph Operations, Representations, and Transformations |
|
|
211 | (4) |
|
|
211 | (1) |
|
4.4.2 Graph Representations |
|
|
212 | (2) |
|
4.4.3 Graph Transformations |
|
|
214 | (1) |
|
4.5 Plane and Planar Graphs |
|
|
215 | (3) |
|
4.6 Some Useful Observations |
|
|
218 | (2) |
|
|
220 | (6) |
|
4.7.1 Matrix-Tree Theorem |
|
|
220 | (2) |
|
4.7.2 Numerical Algorithm |
|
|
222 | (2) |
|
4.7.3 Number of Labeled Trees |
|
|
224 | (1) |
|
4.7.4 Computation of Number of Spanning Trees |
|
|
225 | (1) |
|
4.7.5 Generation of Spanning Trees of a Graph |
|
|
225 | (1) |
|
4.8 The Kappa-core, Kappa-crust, and Kappa-shell of a Graph |
|
|
226 | (2) |
|
|
228 | (4) |
|
4.10 Spectral Analysis of Graphs |
|
|
232 | (3) |
|
4.10.1 Spectral Analysis via Adjacency Matrix |
|
|
232 | (3) |
|
4.10.2 Laplacian Spectral Analysis |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (5) |
|
|
241 | (2) |
|
|
243 | (106) |
|
|
245 | (1) |
|
|
246 | (5) |
|
5.2.1 Requirements for an Axiomatic System |
|
|
246 | (1) |
|
5.2.2 Axiomatic Foundation of Euclidean Geometry |
|
|
247 | (2) |
|
5.2.3 Basic Definitions and Constructions |
|
|
249 | (2) |
|
|
251 | (3) |
|
5.4 Elementary Differential Geometry |
|
|
254 | (9) |
|
5.4.1 Mathematical Preliminaries |
|
|
254 | (2) |
|
|
256 | (1) |
|
5.4.3 Curves in Plane and Space |
|
|
257 | (6) |
|
5.5 Basics of Surface Geometry |
|
|
263 | (8) |
|
|
263 | (2) |
|
5.5.2 First Fundamental Form |
|
|
265 | (2) |
|
5.5.3 Conformal Mapping of Surfaces |
|
|
267 | (1) |
|
5.5.4 Second Fundamental Form |
|
|
268 | (3) |
|
5.6 Properties of Surfaces |
|
|
271 | (13) |
|
5.6.1 Curves on a Surface |
|
|
272 | (6) |
|
5.6.2 Local Isometry of Surfaces |
|
|
278 | (1) |
|
5.6.3 Geodesics on a Surface |
|
|
279 | (5) |
|
5.7 Prelude to Hyperbolic Geometry |
|
|
284 | (8) |
|
5.7.1 Surfaces of Revolution |
|
|
285 | (2) |
|
5.7.2 Constant Gaussian Curvature Surfaces |
|
|
287 | (1) |
|
|
288 | (1) |
|
5.7.4 A Conformal Mapping Perspective |
|
|
289 | (3) |
|
|
292 | (12) |
|
5.8.1 Upper Half-Plane Model |
|
|
293 | (2) |
|
5.8.2 Isometrics of Upper Half-Plane Model |
|
|
295 | (2) |
|
5.8.3 Poincare Disc Model |
|
|
297 | (4) |
|
5.8.4 Surface of Different Constant Curvature |
|
|
301 | (1) |
|
|
301 | (1) |
|
5.8.6 Geometric Constructions |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
304 | (42) |
|
|
346 | (3) |
|
|
349 | (108) |
|
|
351 | (1) |
|
|
351 | (11) |
|
|
352 | (1) |
|
6.2.2 Limits, Continuity, Derivatives, and Monotonicity |
|
|
352 | (4) |
|
6.2.3 Partial Derivatives |
|
|
356 | (2) |
|
6.2.4 Jacobians, Singularity, and Related Topics |
|
|
358 | (1) |
|
6.2.5 Hyperbolic Functions |
|
|
359 | (1) |
|
6.2.6 Ordinary Differential Equations |
|
|
360 | (2) |
|
|
362 | (9) |
|
6.3.1 Coordinate Representation |
|
|
363 | (1) |
|
6.3.2 De Moivre's and Euler's Identities |
|
|
364 | (1) |
|
6.3.3 Limits, Continuity, Derivatives, and Analyticity |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
6.3.8 Lagrange's Series Expansion |
|
|
369 | (1) |
|
6.3.9 Saddle Point Technique of Integration |
|
|
369 | (2) |
|
|
371 | (2) |
|
6.4.1 Straight Line and Circle |
|
|
371 | (1) |
|
|
372 | (1) |
|
6.5 Moebius Transformation |
|
|
373 | (5) |
|
6.6 Polynomial Properties |
|
|
378 | (10) |
|
6.6.1 Roots of a Polynomial |
|
|
378 | (1) |
|
6.6.2 Resultant of Two Polynomials |
|
|
378 | (4) |
|
6.6.3 Discriminant of a Polynomial |
|
|
382 | (1) |
|
|
383 | (5) |
|
6.7 Asymptotic Behavior and Algorithmic-Complexity Classes |
|
|
388 | (5) |
|
6.7.1 Asymptotic Behavior |
|
|
388 | (4) |
|
6.7.2 Algorithmic-Complexity Classes |
|
|
392 | (1) |
|
|
393 | (2) |
|
|
393 | (1) |
|
|
394 | (1) |
|
6.9 Vector Spaces Revisited |
|
|
395 | (8) |
|
6.9.1 Normed Vector Space |
|
|
396 | (1) |
|
6.9.2 Complete Vector Space |
|
|
396 | (2) |
|
|
398 | (1) |
|
6.9.4 Inner Product Space |
|
|
399 | (1) |
|
|
400 | (2) |
|
6.9.6 Gram-Schmidt Orthogonalization Process |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
403 | (6) |
|
6.10.1 Generalized Functions |
|
|
404 | (1) |
|
6.10.2 Conditions for the Existence of Fourier Series |
|
|
405 | (1) |
|
6.10.3 Complex Fourier Series |
|
|
406 | (1) |
|
6.10.4 Trigonometric Fourier Series |
|
|
407 | (2) |
|
6.11 Transform Techniques |
|
|
409 | (20) |
|
|
409 | (4) |
|
|
413 | (3) |
|
|
416 | (2) |
|
6.11.4 Wigner-Ville Transform |
|
|
418 | (1) |
|
|
419 | (3) |
|
6.11.6 Hadamard Transform |
|
|
422 | (1) |
|
6.11.7 Discrete Fourier Transform |
|
|
423 | (6) |
|
6.12 Faa di Bruno's Formula |
|
|
429 | (2) |
|
6.13 Special Mathematical Functions |
|
|
431 | (3) |
|
6.13.1 Gamma and Incomplete Gamma Functions |
|
|
431 | (1) |
|
|
432 | (1) |
|
6.13.3 Riemann's Zeta Function |
|
|
432 | (1) |
|
6.13.4 Polylogarithm Function |
|
|
433 | (1) |
|
|
433 | (1) |
|
6.13.6 Exponential Integral |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
435 | (18) |
|
|
453 | (4) |
|
7 Optimization, Stability, and Chaos Theory |
|
|
457 | (82) |
|
|
459 | (1) |
|
7.2 Basics of Optimization Theory |
|
|
460 | (5) |
|
7.2.1 Convex and Concave Functions |
|
|
460 | (3) |
|
|
463 | (2) |
|
|
465 | (3) |
|
7.4 Elements of Linear Programming |
|
|
468 | (5) |
|
|
468 | (1) |
|
7.4.2 Farkas' Alternative |
|
|
469 | (1) |
|
7.4.3 Primal and Dual Problems |
|
|
469 | (4) |
|
7.5 Optimization Techniques |
|
|
473 | (18) |
|
7.5.1 Taylor's Series of Several Variables |
|
|
473 | (1) |
|
7.5.2 Minimization and Maximization of a Function |
|
|
474 | (3) |
|
7.5.3 Nonlinear Constrained Optimization |
|
|
477 | (1) |
|
7.5.4 Optimization Problem with Equality Constraints |
|
|
478 | (3) |
|
7.5.5 Optimization Problem with Inequality Constraints |
|
|
481 | (6) |
|
7.5.6 Nonlinear Optimization via Duality Theory |
|
|
487 | (4) |
|
7.6 Calculus of Variations |
|
|
491 | (3) |
|
|
494 | (14) |
|
7.7.1 Notions Used in Describing a System |
|
|
494 | (5) |
|
|
499 | (9) |
|
|
508 | (8) |
|
|
509 | (2) |
|
7.8.2 Characterization of Chaotic Dynamics |
|
|
511 | (3) |
|
7.8.3 Examples of Chaotic Maps |
|
|
514 | (2) |
|
|
516 | (1) |
|
|
517 | (18) |
|
|
535 | (4) |
|
|
539 | (70) |
|
|
541 | (1) |
|
8.2 Axioms of Probability Theory |
|
|
542 | (2) |
|
|
544 | (2) |
|
|
546 | (2) |
|
|
547 | (1) |
|
8.4.2 Common Second Order Expectations |
|
|
548 | (1) |
|
8.5 Independent Random Variables |
|
|
548 | (1) |
|
8.6 Transforms and Moment Generating Functions |
|
|
549 | (2) |
|
|
549 | (1) |
|
8.6.2 Moment Generating Function |
|
|
550 | (1) |
|
8.7 Examples of Some Distributions |
|
|
551 | (8) |
|
8.7.1 Discrete Distributions |
|
|
552 | (1) |
|
8.7.2 Continuous Distributions |
|
|
553 | (4) |
|
8.7.3 Multivariate Gaussian Distribution |
|
|
557 | (2) |
|
8.8 Some Well-Known Results |
|
|
559 | (5) |
|
8.8.1 Well-Known Inequalities |
|
|
559 | (2) |
|
8.8.2 Law of Large Numbers |
|
|
561 | (1) |
|
8.8.3 Gaussian Central Limit Theorem |
|
|
562 | (2) |
|
8.9 Generalized Central Limit Theorem |
|
|
564 | (9) |
|
8.9.1 Characteristic Function |
|
|
564 | (1) |
|
8.9.2 Infinitely Divisible Distributions |
|
|
565 | (4) |
|
8.9.3 Stable Distributions |
|
|
569 | (4) |
|
|
573 | (2) |
|
8.10.1 Joint Distribution of U and V |
|
|
573 | (1) |
|
8.10.2 Distribution of Range |
|
|
574 | (1) |
|
8.10.3 A Property of the Average Value of Range |
|
|
574 | (1) |
|
8.11 Large Deviation Theory |
|
|
575 | (5) |
|
8.11.1 A Prelude via Saddle Point Technique |
|
|
576 | (1) |
|
8.11.2 Cramer and Bahadur-Rao Theorems |
|
|
577 | (3) |
|
|
580 | (1) |
|
|
580 | (26) |
|
|
606 | (3) |
|
|
609 | (70) |
|
|
611 | (1) |
|
9.2 Terminology and Definitions |
|
|
611 | (2) |
|
|
613 | (3) |
|
9.3.1 Sigma-Algebra, Measurable Sets, and Measurable Space |
|
|
613 | (1) |
|
|
614 | (1) |
|
|
614 | (1) |
|
9.3.4 Measurable Function |
|
|
615 | (1) |
|
9.4 Examples of Stochastic Processes |
|
|
616 | (9) |
|
|
616 | (3) |
|
|
619 | (3) |
|
|
622 | (1) |
|
9.4.4 Brownian Motion Process |
|
|
622 | (1) |
|
9.4.5 Gaussian White Noise Process |
|
|
623 | (1) |
|
9.4.6 Brownian Motion and Gaussian White Noise |
|
|
624 | (1) |
|
|
625 | (10) |
|
9.5.1 Poisson Point Process |
|
|
628 | (2) |
|
|
630 | (2) |
|
9.5.3 Marked Point Process |
|
|
632 | (2) |
|
9.5.4 Transformation of Poisson Point Processes |
|
|
634 | (1) |
|
|
635 | (7) |
|
9.6.1 Ordinary Renewal Process |
|
|
635 | (2) |
|
9.6.2 Modified Renewal Process |
|
|
637 | (1) |
|
9.6.3 Alternating Renewal Process |
|
|
638 | (2) |
|
9.6.4 Backward and Forward Recurrence-Times |
|
|
640 | (1) |
|
9.6.5 Equilibrium Renewal Process |
|
|
641 | (1) |
|
9.6.6 Equilibrium Alternating Renewal Process |
|
|
641 | (1) |
|
|
642 | (19) |
|
9.7.1 Discrete-Time Markov Chains |
|
|
643 | (7) |
|
9.7.2 Continuous-Time Markov Chains |
|
|
650 | (8) |
|
9.7.3 Continuous-Time Markov Processes |
|
|
658 | (3) |
|
|
661 | (1) |
|
|
662 | (15) |
|
|
677 | (2) |
|
|
679 | |