Preface |
|
ix | |
|
|
|
Chapter 1 The Fisher Efficiency |
|
|
3 | (8) |
|
1.1 Statistical Experiment |
|
|
3 | (3) |
|
1.2 The Fisher Information |
|
|
6 | (1) |
|
1.3 The Cramer-Rao Lower Bound |
|
|
7 | (1) |
|
1.4 Efficiency of Estimators |
|
|
8 | (3) |
|
|
9 | (2) |
|
Chapter 2 The Bayes and Minimax Estimators |
|
|
11 | (10) |
|
2.1 Pitfalls of the Fisher Efficiency |
|
|
11 | (2) |
|
|
13 | (3) |
|
2.3 Minimax Estimator. Connection Between Estimators |
|
|
16 | (2) |
|
2.4 Limit of the Bayes Estimator and Minimaxity |
|
|
18 | (3) |
|
|
19 | (2) |
|
Chapter 3 Asymptotic Minimaxity |
|
|
21 | (22) |
|
|
21 | (1) |
|
3.2 Asymptotic Minimax Lower Bound |
|
|
22 | (4) |
|
3.3 Sharp Lower Bound. Normal Observations |
|
|
26 | (2) |
|
3.4 Local Asymptotic Normality (LAN) |
|
|
28 | (3) |
|
3.5 The Hellinger Distance |
|
|
31 | (2) |
|
3.6 Maximum Likelihood Estimator |
|
|
33 | (2) |
|
3.7 Proofs of Technical Lemmas |
|
|
35 | (8) |
|
|
40 | (3) |
|
Chapter 4 Some Irregular Statistical Experiments |
|
|
43 | (8) |
|
4.1 Irregular Models: Two Examples |
|
|
43 | (1) |
|
4.2 Criterion for Existence of the Fisher Information |
|
|
44 | (1) |
|
4.3 Asymptotically Exponential Statistical Experiment |
|
|
45 | (2) |
|
4.4 Minimax Rate of Convergence |
|
|
47 | (1) |
|
|
47 | (4) |
|
|
49 | (2) |
|
Chapter 5 Change-Point Problem |
|
|
51 | (14) |
|
5.1 Model of Normal Observations |
|
|
51 | (3) |
|
5.2 Maximum Likelihood Estimator of Change Point |
|
|
54 | (2) |
|
5.3 Minimax Limiting Constant |
|
|
56 | (1) |
|
5.4 Model of Non-Gaussian Observations |
|
|
57 | (2) |
|
|
59 | (6) |
|
|
62 | (3) |
|
Chapter 6 Sequential Estimators |
|
|
65 | (20) |
|
6.1 The Markov Stopping Time |
|
|
65 | (4) |
|
6.2 Change-Point Problem. Rate of Detection |
|
|
69 | (4) |
|
6.3 Minimax Limit in the Detection Problem |
|
|
73 | (2) |
|
6.4 Sequential Estimation in the Autoregressive Model |
|
|
75 | (10) |
|
|
83 | (2) |
|
Chapter 7 Linear Parametric Regression |
|
|
85 | (16) |
|
7.1 Definitions and Notations |
|
|
85 | (2) |
|
7.2 Least-Squares Estimator |
|
|
87 | (2) |
|
7.3 Properties of the Least-Squares Estimator |
|
|
89 | (4) |
|
7.4 Asymptotic Analysis of the Least-Squares Estimator |
|
|
93 | (8) |
|
|
96 | (5) |
|
Part 2 Nonparametric Regression |
|
|
|
Chapter 8 Estimation in Nonparametric Regression |
|
|
101 | (14) |
|
|
101 | (2) |
|
8.2 Asymptotically Minimax Rate of Convergence. Definition |
|
|
103 | (1) |
|
|
104 | (2) |
|
8.4 Smoothing Kernel Estimator |
|
|
106 | (9) |
|
|
112 | (3) |
|
Chapter 9 Local Polynomial Approximation of the Regression Function |
|
|
115 | (16) |
|
9.1 Preliminary Results and Definition |
|
|
115 | (4) |
|
9.2 Polynomial Approximation and Regularity of Design |
|
|
119 | (3) |
|
9.3 Asymptotically Minimax Lower Bound |
|
|
122 | (4) |
|
9.4 Proofs of Auxiliary Results |
|
|
126 | (5) |
|
|
130 | (1) |
|
Chapter 10 Estimation of Regression in Global Norms |
|
|
131 | (20) |
|
|
131 | (2) |
|
10.2 Integral Z/2-Norm Risk for the Regressogram |
|
|
133 | (3) |
|
10.3 Estimation in the Sup-Norm |
|
|
136 | (2) |
|
10.4 Projection on Span-Space and Discrete MISE |
|
|
138 | (3) |
|
10.5 Orthogonal Series Regression Estimator |
|
|
141 | (10) |
|
|
148 | (3) |
|
Chapter 11 Estimation by Splines |
|
|
151 | (16) |
|
11.1 In Search of Smooth Approximation |
|
|
151 | (1) |
|
|
152 | (3) |
|
11.3 Shifted B-splines and Power Splines |
|
|
155 | (3) |
|
11.4 Estimation of Regression by Splines |
|
|
158 | (3) |
|
11.5 Proofs of Technical Lemmas |
|
|
161 | (6) |
|
|
166 | (1) |
|
Chapter 12 Asymptotic Optimality in Global Norms |
|
|
167 | (18) |
|
12.1 Lower Bound in the Sup-Norm |
|
|
167 | (4) |
|
12.2 Bound in L2-Norm. Assouad's Lemma |
|
|
171 | (3) |
|
|
174 | (3) |
|
12.4 Examples and Extensions |
|
|
177 | (8) |
|
|
182 | (3) |
|
Part 3 Estimation in Nonparametric Models |
|
|
|
Chapter 13 Estimation of Functionals |
|
|
185 | (8) |
|
13.1 Linear Integral Functionals |
|
|
185 | (3) |
|
13.2 Non-Linear Functionals |
|
|
188 | (5) |
|
|
191 | (2) |
|
Chapter 14 Dimension and Structure in Nonparametric Regression |
|
|
193 | (18) |
|
14.1 Multiple Regression Model |
|
|
193 | (3) |
|
|
196 | (3) |
|
|
199 | (7) |
|
14.4 Proofs of Technical Results |
|
|
206 | (5) |
|
|
209 | (2) |
|
Chapter 15 Adaptive Estimation |
|
|
211 | (16) |
|
15.1 Adaptive Rate at a Point. Lower Bound |
|
|
211 | (4) |
|
15.2 Adaptive Estimator in the Sup-Norm |
|
|
215 | (3) |
|
15.3 Adaptation in the Sequence Space |
|
|
218 | (5) |
|
|
223 | (4) |
|
|
225 | (2) |
|
Chapter 16 Testing of Nonparametric Hypotheses |
|
|
227 | (12) |
|
|
227 | (2) |
|
16.2 Separation Rate in the Sup-Norm |
|
|
229 | (2) |
|
16.3 Sequence Space. Separation Rate in the L2-Norm |
|
|
231 | (8) |
|
|
237 | (2) |
Bibliography |
|
239 | (2) |
Index of Notation |
|
241 | (2) |
Index |
|
243 | |