Muutke küpsiste eelistusi

E-raamat: Mathematical Theory Of Adaptive Control

Translated by (Russian Academy Of Sci, Russia), Edited by (Polish Academy Of Sciences, Poland), (.), Edited by (Polish Academy Of Sciences, Poland), Edited by (Warsaw Univ Of Technology, Poland)
  • Formaat - PDF+DRM
  • Hind: 74,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The theory of adaptive control is concerned with construction of strategies so that the controlled system behaves in a desirable way, without assuming the complete knowledge of the system. The models considered in this comprehensive book are of Markovian type. Both partial observation and partial information cases are analyzed. While the book focuses on discrete time models, continuous time ones are considered in the final chapter. The book provides a novel perspective by summarizing results on adaptive control obtained in the Soviet Union, which are not well known in the West. Comments on the interplay between the Russian and Western methods are also included.

Arvustused

"This book is addressed both to students with a good mathematical background and to researchers and specialists in adaptive control who may find the book inspirational." Mathematical Reviews

Preface vii
Editor's Note xi
Basic Notions and Definitions
1(32)
Random Processes and Systems of Probability Distributions
1(4)
Controlled Random Processes
5(14)
Definition of Adaptive Control
19(6)
Learning Systems
25(4)
Bayesian Approach on a Finite Interval
29(4)
Real-Valued HPIV with Finite Number of Controls: Automation Approach
33(44)
Formulation of the Problem
33(3)
Optimal Properties of Finite Automata
36(13)
Automata with Increasing Memory
49(6)
δω-Automata and Their Modifications
55(13)
Automata with Formed Structure
68(4)
Asymptotic Optimality of Automata with Variable Structure
72(5)
Stochastic Approximation
77(20)
Formulation of the Problem
77(4)
Convergence Conditions of Stochastic Approximation Procedures
81(5)
Survey of Asymptotic Properties of Stochastic Approximation Methods for HPIV
86(3)
Calculation of the Conditional Extremum
89(8)
Minimax Adaptive Control
97(26)
Games with Consistent Interests
97(5)
Some Remarks on Minimax Control of Vector HPIV
102(2)
Recurrent Procedure of Searching Equilibrium Strategies in a Multi-person Game
104(4)
Games of Automata
108(15)
Controlled Finite Homogeneous Markov Chains
123(50)
Preliminary Remarks
123(2)
Structure of Finite Homogeneous Controlled Markov Chains
125(8)
Unconditional Optimal Adaptive Control for Finite Markov Chains
133(3)
The First Control Algorithm for a Class of Markov Chains (identificational)
136(3)
The Second Control Algorithm for a Class of Markov Chains (automata)
139(3)
The Third Control Algorithm for a Class of Markov Chains (stochastic approximation)
142(12)
Adaptive Optimization with Constraints on Markov Chains
154(7)
Minimax Adaptive Problems on Finite Markov Chains
161(6)
Controlled Graphs with Rewards
167(6)
Control of Partially Observable Markov Chains and Regenerative Processes
173(30)
Preliminary Remarks
173(1)
Control of Conditional Markov Chains
174(7)
Optimal Adaptive Control of Partially Observable Markov Chains and Graphs
181(3)
Control of Regenerative Processes
184(2)
Structure of ε-optimal Strategies for Controlled Regenerative Processes
186(10)
Adaptive Strategies for Controlled Regenerative Processes
196(7)
Control of Markov Processes with Discrete Time and Semi-Markov Processes
203(48)
Preliminary Results
203(8)
Optimal Automaton Control for Markov Processes with A Compact State Space and A Finite Control Set
211(4)
Searching Optimal Strategies for Ergodic Markov Processes with Compact Spaces of States and Controls
215(6)
Control of Finite Semi-Markov Processes
221(4)
Control of Countably Valued Semi-Markov Processes
225(12)
Optimal Control of Special Classes of Markov Processes with Discrete Time
237(14)
Control of Stationary Processes
251(16)
Formulation of the Problem
251(1)
Some Properties of Stationary Processes
252(2)
Auxiliary Results for CSP
254(8)
Adaptive Strategies for CSP
262(5)
Finite-Converging Procedures for Control Problems with Inequalities
267(20)
Formulation of the Problem
267(2)
Finite-converging Procedures of Solving A Countable System of Inequalities
269(4)
Sufficient Conditions for Existence of FCP
273(3)
Stabilization of Solutions of Linear Difference Equations: Part I
276(5)
Stabilization of Solutions of Linear Difference Equations: Part II
281(6)
Control of Linear Difference Equations
287(72)
Auxiliary Results
287(10)
Control of Homogeneous Equations xt+1 = Axt + But
297(5)
Optimal Tracking Problem for ARMAX
302(8)
Optimal Tracking and Consistency of Estimates for ARMAX
310(10)
Adaptive Modal Control
320(8)
On Strong Consistency of LSE and SGE of Parameters
328(11)
Linear-Quadratic Problem (LQP)
339(13)
LQP for ARMAX-type Equations
352(7)
Control of Ordinary Differential Equations
359(62)
Preliminary Results
359(6)
Control of Homogeneous Equations
365(5)
Control with A Model Reference
370(11)
Steepest Descent Method
381(6)
Stabilization of Solutions of Minimum Phase Equations
387(8)
Stabilization of Minimum Phase Equations with Nonlinearities
395(2)
Stabilization of Linear Minimum Phase Equations in Hilbert Space
397(7)
Control of Stabilizable Equations
404(9)
Two Special Problems of Adaptive Control
413(8)
Control of Stochastic Differential Equations
421(24)
Preliminary Results
421(9)
Stabilization of Solutions of Minimum Phase Ito Equations
430(9)
Identification Methods for Ito Equations
439(2)
LQP for Stochastic Ito Equations
441(4)
Comments and Supplements 445(14)
General References 459(2)
Special References 461(8)
Additional References 469(2)
Index 471