Muutke küpsiste eelistusi

E-raamat: Mathematical Theory of Fuzzy Sets

  • Formaat: 642 pages
  • Ilmumisaeg: 13-Dec-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040269565
  • Formaat - EPUB+DRM
  • Hind: 247,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 642 pages
  • Ilmumisaeg: 13-Dec-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040269565

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Mathematical Theory of Fuzzy Sets presents the mathematical theory of non-normal fuzzy sets such that it can be rigorously used as a basic tool to study engineering and economic problems under a fuzzy environment. It may also be used as a textbook at the graduate level, or as a reference for researchers.

The book explores the current state of affairs in set operations of fuzzy sets, arithmetic operations of fuzzy interval, and fuzzification of crisp functions, which are frequently adopted to model engineering and economic problems with fuzzy uncertainty. In particular, the concepts of gradual sets and gradual elements are presented in order to cope with the difficulty of considering elements of fuzzy sets like considering elements of crisp sets.

Features

  • Many extensions and equivalences for the essence of non-normal fuzzy sets
  • Generalization of extension principle
  • Presentation of the concepts of gradual sets and gradual elements


This book presents the mathematical theory of non-normal fuzzy sets such that it can be rigorously used as a basic tool to study engineering and economic problems under a fuzzy environment. It may also be used as a textbook at the graduate level, or as a reference for researchers.

1. Mathematical Analysis. 1.1. Infimum and Supremum. 1.2. Limit Inferior and Limit Superior. 1.3. Semi-Continuity. 1.4. Miscellaneous.
2. Fuzzy Sets.
2.1. Membership Functions. 2.2. a-Level Sets. 2.3. Identical Properties. 2.4. Types of Fuzzy Sets. 3. Set Operations of Fuzzy Sets. 3.1. Complement of Fuzzy Sets. 3.2. Intersection of Fuzzy Sets. 3.3. Union of Fuzzy Sets. 3.4. Inductive and Direct Definitions. 3.5. a-Level Sets of Intersection and Union. 3.6. Mixed Set Operations. 4. Generalized Extension Principle. 4.1. Fuzzification of Crisp Functions. 4.2. Extension Principle Based on the Euclidean Space. 4.3. Extension Principle Based on the Topological Spaces. 4.4. Extension Principle Based on the Triangular Norms. 4.5. Generalized Extension Principle Based on the Topological Spaces. 4.6. Generalized Extension Principle Based on the Normed Spaces. 4.7. Generalized Extension Principle for Non-Normal Fuzzy Sets. 5. Arithmetics of Fuzzy Sets. 5.1. Arithmetics of Fuzzy Sets in R. 5.2. Arithmetics of Fuzzy Intervals. 5.3. Arithmetics of Fuzzy Vectors. 6. Gradual Elements and Gradual Sets. 6.1. Basic Concepts. 6.2. Set Operations Using Gradual Elements. 6.3. Arithmetics Using Gradual Numbers. 7. Generating Fuzzy Sets. 7.1. Gradual Sets and Its Rearrangement. 7.2. Nested Gradual Sets. 7.3. Countable-Based Nested Gradual Sets. 7.4. Generating Fuzzy Sets from Nested Gradual Sets. 7.5. Generating Fuzzy Sets from Countable-Based Nested Gradual Sets. 7.6. Defining Membership Functions. 7.8. Generating Fuzzy Intervals. 7.9. Elements and Subsets of Fuzzy Intervals. 7.10. Uniqueness of Construction. 8. Fuzzification of Crisp Functions. 8.1. Fuzzification Using the Extension Principle. 8.2. Fuzzification Using the Expression in Decomposition Theorem. 8.3. The Equivalences and Fuzziness. 8.4. Fuzzification Using Gradual Numbers. 9. General Fuzzification. 9.1. Fuzzification Using the Extension Principle. 9.2. Fuzzification Using the Expression in Decomposition Theorem. 9.3. Equivalence for the General Case. 9.4. Equivalence for the Practical Cases. 10. General Arithmetics of Fuzzy Sets. 10.1. Arithmetics of Fuzzy Sets in Vector Space. 10.2. Arithmetic Operations Using Compatibility and Associativity. 10.3. Equivalence with the Arithmetics Using Gradual Numbers. 10.4. Binary Operations. 10.5. Hausdorff Differences. 11. Inner Product of Fuzzy Vectors. 11.1. The First Type of Inner Product. 11.2. The Second Type of Inner Product. 12. Duality in Fuzzy Sets. 12.1. Lower and Upper Level Sets. 12.2. Dual Fuzzy Sets. 12.3. Dual Extension Principle. 12.4. Dual Arithmetics of Fuzzy Sets. 12.5. Representation Theorem for Dual-Fuzzified Function.

Hsien-Chung Wu is currently a professor at the Department of Mathematics at the National Kaohsiung Normal University in Taiwan. He earned his Ph.D. from the University of Texas at Austin in the USA. He has published more than 130 scientific papers published in international journals. He is an associate editor of Fuzzy Optimization and Decision Making, and area editor of the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. His current research includes the foundation of fuzzy sets and nonlinear analysis.