Muutke küpsiste eelistusi

E-raamat: Mathematical Theory of Hemivariational Inequalities and Applications

(Aristotle University, Thessaloniki, Greece),
  • Formaat - EPUB+DRM
  • Hind: 54,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A rigorous presentation of the mathematics of the expressions that arise in problems involving nonconvex, nonsmooth energy functions. It establishes a theory of the existence of solutions for inequality problems involving nonconvexity and nonsmoothness, and illustrates the mathematical results with examples from mechanics, engineering, and economics. It explains hemivariational inequalities for static one-dimensional and multidimensional nonconvex superpotential laws, locally Lipschitz functionals, and free boundary problems. Annotation copyright Book News, Inc. Portland, Or.

Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established.

Arvustused

". . .well written and organized. . ..clearly stated. . ..provides a broader and more unified perspective on what still needs to be developed. . ..these results will be applied in the fields of mechanics, elasticity, and various branches of engineering." ---Zbl. Math

Introductory material; pseudo-monotonicity and generalized pseudo-monotonicity; hemivariational inequalities for static one-dimensional nonconvex superpotential laws; hemivariational inequalities for locally Lipschitz functionals; hemivariational inequalities for multidimensional superpotential law; noncoercive hemivariational inequalities related to free boundary problems; constrained problems for nonconvex star-shaped admissible sets.
Naniewicz\, Zdzistaw; Panagiotopoulos\, P. D.