Muutke küpsiste eelistusi

E-raamat: Mathematical Understanding for Secondary Teaching

Edited by , Edited by , Edited by
  • Formaat: 471 pages
  • Ilmumisaeg: 01-Dec-2015
  • Kirjastus: Information Age Publishing
  • ISBN-13: 9781681231150
  • Formaat - PDF+DRM
  • Hind: 69,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 471 pages
  • Ilmumisaeg: 01-Dec-2015
  • Kirjastus: Information Age Publishing
  • ISBN-13: 9781681231150

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A perennial discussion about teacher development is the optimal content background for teachers. In recent years, that discussion has taken center stage in the work of mathematics education researchers, mathematicians, mathematics professional developers, and mathematics education policymakers. Much of the existing and prior work in this area has been directed toward mathematical knowledge for teaching at the elementary level. The work described in this volume takes a sometimes-neglected approach, focusing on the dynamic nature of mathematical understanding rather than on a stable description of mathematical knowledge, and on mathematics for secondary teaching rather than mathematics for teaching at the elementary level.

The work reported in Mathematical Understanding for Secondary Teaching: A Framework and Classroom-Based Situations is a practice-based response to the question of what mathematical understandings secondary teachers could productively use in their teaching. For each of more than 50 events, our team of almost 50 mathematics educators who were experienced mathematics teachers developed descriptions of the mathematics that teachers could use—each of those descriptions (consisting of the event and the mathematics related to the event) is what we call a Situation. We developed our Framework for Mathematical Understanding for Secondary Teaching (MUST) based on an analysis of our entire set of Situations. We call the work practice-based because the MUST framework is based on actual events that we witnessed in our observations of secondary mathematics practice.

Groups of mathematics teachers can use this volume to enhance their own understandings of secondary mathematics. School leaders and professional developers in secondary mathematics will find our MUST Framework and Situations useful as they work with teachers in enhancing and deepening their understanding of secondary mathematics. Mathematics teacher educators and mathematicians who teach mathematics to prospective and in-service secondary teachers will be able to couch their mathematical discussions in the Situations—examples that arise from secondary mathematics classrooms. They will be able to use this volume as they design courses and programs that enhance mathematics from the perspectives identified in the MUST framework. Policymakers and researchers can use our MUST framework as they consider the mathematics background needed by teachers.



This volume addresses the dynamic nature of mathematical understanding for secondary teaching. It presents a practice-based framework (MUST) developed from real classroom events. The book is useful for teachers, school leaders, professional developers, educators, and policymakers to enhance secondary mathematics understanding.

Preface vii
1 Background for the Mathematical Understanding Framework 1(8)
Jeremy Kilpatrick
2 Mathematical Understanding for Secondary Teaching: A Framework 9(22)
Jeremy Kilpatrick
Glendon Blume
M. Kathleen Heid
James Wilson
Patricia Wilson
Rose Mary Zbiek
3 Development of Practice-Based Situations 31(10)
Patricia Wilson
Rose Mary Zbiek
4 From Situations to Framework 41(16)
Patricia Wilson
M. Kathleen Heid
5 Creating New Situations as Inquiry 57(8)
Rose Mary Zbiek
Glendon Blume
6 Summary of Uses of the Must Framework and Situations 65(30)
James W. Wilson
7 Division Involving Zero: Situation 1 From the MACMTL— CPTM Situations Project 95(8)
Bradford Findell
Evan McClintock
Glendon Blume
Ryan Fox
Rose Mary Zbiek
Brian Gleason
8 Product of Two Negative Numbers: Situation 2 From the MACMTL—CPTM Situations Project 103(14)
Ryan Fox
Sarah Donaldson
M. Kathleen Heid
Glendon Blume
James Wilson
9 Cross Multiplication: Situation 3 From the MACMTL—CPTM Situations Project 117(4)
Rose Mary Zbiek
M. Kathleen Held
Brian Gleason
Shawn Broderick
10 Summing the Natural Numbers: Situation 4 From the MACMTL—CPTM Situations Project 121(14)
Shari Reed
Anna Marie Conner
Ryan Fox
Shiv Karunakaran
M. Kathleen Heid
Evan McClintock
Heather Johnson
Kelly Edenfield
Jeremy Kilpatrick
Eric Gold
11 Modular Arithmetic: Situation 5 From the MACMTL—CPTM Situations Project 135(12)
Pawel Nazarewicz
Glendon Blume
Heather Johnson
Svetlana Konnova
Jeanne Shimizu
12 Absolute Value Equations and Inequalities: Situation 6 From the MACMTL—CPTM Situations Project 147(8)
Shari Reed
Anna Marie Conner
Sarah Donaldson
Kanita DuCloux
Kelly Edenfield
Erik Jacobson
13 Absolute Value In Complex Plane: Situation 7 From the MACMTL—CPTM Situations Project 155(8)
Heather Johnson
Shiv Karunakaran
Evan McClintock
Pawel Nazarewicz
Erik Jacobson
Kelly Edenfield
14 Properties of land Other Complex Numbers: Situation 8 From the MACMTL—CPTM Situations Project 163(8)
Erik Tillema
Evan McClintock
M. Kathleen Heid
Heather Johnson
15 Square Root of i: Situation 9 From the MACMTL-CPTM Situations Project 171(8)
Heather Johnson
Shiv Karunakaran
Ryan Fox
Evan McClintock
16 Exponent Rules: Situation 10 From the MACMTL-CPTM Situations Project 179(6)
Erik Tillema
Sarah Donaldson
Kelly Edenfield
James Wilson
Eileen Murray
Glendon Blume
17 Powers: Situation 11 From the MACMTL—CPTM Situations Project 185(6)
Tracy Boone
Jana Lunt
Christa Fratto
James Banyas
Eileen Murray
Bob Allen
Sarah Donaldson
M. Kathleen Held
Shiv Karunakaran
Brian Gleason
18 Zero Exponents: Situation 12 From the MACMTL-CPTM Situations Project 191(8)
Tracy Boone
Christa Fratto
Jana Lunt
Heather Johnson
M. Kathleen Heid
Maureen Grady
Shiv Karunakaran
19 Multiplying Monomials and Binomials: Situation 13 From the MACMTL—CPTM Situations Project 199(8)
Jeanne Shimizu
Tracy Boone
Jana Lunt
Christa Fratto
Erik Tillema
Jeremy Kilpatrick
Sarah Donaldson
Ryan Fox
Heather Johnson
Maureen Grady
Svetlana Konnova
M. Kathleen Heid
20 Adding Square Roots: Situation 14 From the MACMTL-CPTM Situations Project 207(4)
Amy Hackenberg
Eileen Murray
Heather Johnson
Glendon Blume
M. Kathleen Heid
21 Square Roots: Situation 15 From the MACMTL—CPTM Situations Project 211(6)
Tracy Boone
Jana Lunt
Christa Fratto
James Banyas
Sarah Donaldson
James Wilson
Patricia S. Wilson
Heather Johnson
Brian Gleason
22 Inverse Trigonometric Functions: Situation 16 From the MACMTL-CPTM Situations Project 217(6)
Rose Mary Zbiek
M. Kathleen Heid
Ryan Fox
Kelly Edenfield
Jeremy Kilpatrick
Evan McClintock
Heather Johnson
Brian Gleason
23 Zero-Product Property: Situation 17 From the MACMTL— CPTM Situations Project 223(6)
Jeanne Shimizu
Heather Johnson
Ryan Fox
Laura Singletary
Sarah Donaldson
24 Simultaneous Equations: Situation 18 From the MACMTL- CPTM Situations Project 229(10)
Dennis Hembree
Erik Tillema
Evan McClintock
Rose Mary Zbiek
Heather Johnson
Patricia S. Wilson
James Wilson
Ryan Fox
25 Graphing Inequalities Containing Absolute Values: Situation 19 From the MACMTL—CPTM Situations Project 239(10)
Shari Reed
Anna Marie Conner
M. Kathleen Held
Heather Johnson
Maureen Grady
Svetlana Konnova
26 Solving Quadratic Equations: Situation 20 From the MACMTL—CPTM Situations Project 249(8)
Jeanne Shimizu
Sarah Donaldson
Kelly Edeqfield
Erik Jacobson
27 Graphing Quadratic Functions: Situation 21 From the MACMTL—CPTM Situations Project 257(6)
Ginger Rhodes
Ryan Fox
Shiv Karunakaran
Rose Mary Zhiek
Brian Gleason
Shawn Broderick
28 Connecting Factoring With the Quadratic Formula: Situation 22 From the MACMTL—CPTM Situations Project 263(14)
Erik Tillema
Heather Johnson
Sharon K. O'Kelley
Erik Jacobson
Glendon Blume
M. Kathleen Heid
29 Perfect-Square Trinomials: Situation 23 From the MACMTL— CPTM Situations Project 277(6)
Bob Allen
Dennis Hembree
Sarah Donaldson
Brian Gleason
Shawn Broderick
M. Kathleen Held
Glendon Blume
30 Temperature Conversion: Situation 24 From the MACMTL— CPTM Situations Project 283(10)
Glendon Blume
Heather Johnson
Maureen Grady
Svetlana Konnova
M. Kathleen Heid
31 Translation of Functions: Situation 25 From the MACMTL- CPTM Situations Project 293(6)
Bob Allen
Brian Gleason
Shawn Broderick
32 Parametric Drawings: Situation 26 From the MACMTL— CPTM Situations Project 299(8)
Rose Mary Zhiek
Eileen Murray
Heather Johnson
Maureen Grady
Svetlana Konnova
M. Kathleen Held
33 Locus of a Point on a Moving Segment: Situation 27 From the MACMTL-CPTM Situations Project 307(10)
Rose Mary Zhiek
James Wilson
Heather Johnson
M. Kathleen Held
Maureen Grady
Svetlana Konnova
34 Constructing a Tangent Line: Situation 28 From the MACMTL—CPTM Situations Project 317(6)
Pawel Nazarewicz
Sharon K. O'Kelley
Erik Jacobson
Glendon Blume
M. Kathleen Heid
35 Faces of a Polyhedral Solid: Situation 29 From the MACMTL— CPTM Situations Project 323(6)
Stephen Bismarck
Glendon Blume
Heather Johnson
Svetlana Konnova
Jeanne Shimizu
36 Area of Plane Figures: Situation 30 From the MACMTL— CPTM Situations Project 329(8)
Erik Tillema
Tenille Cannon
Kim Johnson
Rose Mary Zbiek
37 Area of Sectors of a Circle: Situation 31 From the MACMTL— CPTM Situations Project 337(6)
Dennis Hembree
Sharon K. O'Kelley
Shawn Broderick
James Wilson
38 Similarity: Situation 32 From the MACMTL—CPTM Situations Project 343(8)
Evan McClintock
Susan Peters
Donna Kinol
Shari Reed
Heather Johnson
Erik Tillema
Rose Mary Zbiek
M. Kathleen Heid
Sarah Donaldson
Eileen Murray
Glendon Blume
39 Pythagorean Theorem: Situation 33 From the MACMTL— CPTM Situations Project 351(14)
Patrick Sullivan
M. Kathleen Heid
Maureen Grady
Shiv Karunakaran
40 Circumscribing Polygons: Situation 34 From the MACMTL- CPTM Situations Project 365(12)
Shari Reed
Anna Marie Conner
Heather Johnson
M. Kathleen Heid
Bob Allen
Shiv Karunakaran
Sarah Donaldson
Brian Gleason
41 Calculation of Sine: Situation 35 From the MACMTL—CPTM Situations Project 377(8)
Patricia S. Wilson
Heather Johnson
Jeanne Shimizu
Evan McClintock
Rose Mary Zbiek
M. Kathleen Heid
Maureen Grady
Svetlana Konnova
42 Graphing Sin(2x): Situation 36 From the MACMTL-CPTM Situations Project 385(6)
Heather Johnson
Evan McClintock
Rose Mary Zbiek
Brian Gleason
Shawn Broderick
James Wilson
43 Trigonometric Identities: Situation 37 From the MACMTL- CPTM Situations Project 391(6)
Bob Allen
Sharon K. O'Kelley
Erik Jacobson
44 Mean and Median: Situation 38 From the MACMTL—CPTM Situations Project 397(8)
Susan Peters
Evan McClintock
Donna Kinol
Shiv Karunakaran
Rose Mary Zbiek
M. Kathleen Heid
Laura Singletary
Sarah Donaldson
45 Representing Standard Deviation: Situation 39 From the MACMTL—CPTM Situations Project 405(10)
Rose Mary Zbiek
M. Kathleen Heid
Shiv Karunakaran
Ryan Fox
Eric Gold
Sarah Donaldson
Laura Singletary
46 Sample Variance and Population Variance: Situation 40 From the MACMTL-CPTM Situations Project 415(6)
Ken Montgomery
Sarah Donaldson
47 Least Squares Regression: Situation 41 From the MACMTL- CPTM Situations Project 421(4)
Susan Peters
Evan McClintock
Donna Kinol
Maureen Grady
Heather Johnson
Svetlana Konnova
M. Kathleen Heid
48 The Product Rule for Differentiation: Situation 42 From the MACMTL—CPTM Situations Project 425(8)
Heather Johnson
Shari Reed
Evan McClintock
Erik Jacobson
Kelly Edenfield
49 Proof by Mathematical Induction: Situation 43 From the MACMTL—CPTM Situations Project 433(10)
Erik Tillema
Jeremy Kilpatrick
Heather Johnson
Maureen Grady
Svetlana Konnova
M. Kathleen Held
50 Situating and Reflecting on Our Situations Work 443(10)
M. Kathleen Heid
Appendix: Conference Participants 453
M. Kathleen Heid, The Pennsylvania State University, USA.

Patricia S. Wilson, University of Georgia, USA.

Glendon W. Blume, The Pennsylvania State University, USA.