Muutke küpsiste eelistusi

E-raamat: Mathematics of Information: Theory and Applications of Shannon-Wiener Information

  • Formaat: PDF+DRM
  • Sari: Mathematics Study Resources 9
  • Ilmumisaeg: 22-Jul-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662691021
  • Formaat - PDF+DRM
  • Hind: 30,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Mathematics Study Resources 9
  • Ilmumisaeg: 22-Jul-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662691021

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Starting with the Shannon-Wiener approach to mathematical information theory, allowing a mathematical "measurement" of an amount of information, the book begins by defining the terms message and information and axiomatically assigning an amount of information to a probability. The second part explores countable probability spaces, leading to the definition of Shannon entropy based on the average amount of information; three classical applications of Shannon entropy in statistical physics, mathematical statistics, and communication engineering are presented, along with an initial glimpse into the field of quantum information. The third part is dedicated to general probability spaces, focusing on the information-theoretical analysis of dynamic systems.





The book builds on bachelor-level knowledge and is primarily intended for mathematicians and computer scientists, placing a strong emphasis on rigorous proofs.
Introduction - Symbols - List of figures - Part I Fundamentals. Message and information.- Information and chance.- Part II Countable systems. The entropy.- The maximum entropy principle.- Conditional probabilities.- Quantum information.- Part III General systems.- The entropy of partitions.- Stationary information sources.- Density functions and entropy.- Conditional expectations.- Literature.- Index.
Prof. Dr. Dr. Stefan Schäffler, University of the German Federal Armed Forces Munich, Faculty of Electrical Engineering and Information Technology, Chair of Mathematics and Operations Research.