Muutke küpsiste eelistusi

E-raamat: Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 90,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic.

Applications of max-plus algebra abound in the world around us. Traffic systems, computer communication systems, production lines, and flows in networks are all based on discrete even systems, and thus can be conveniently described and analyzed by means of max-plus algebra.

The book consists of an introduction and thirteen chapters in three parts. Part One explores the introduction of max-plus algebra and of system descriptions based upon it. Part Two deals with a real application, namely the design of timetables for railway networks. Part Three examines various extensions, such as stochastic systems and min-max-plus systems. The text is suitable for last-year undergraduates in mathematics, and each chapter provides exercises, notes, and a reference section.

Arvustused

"Max Plus at Work is the best English textbook for learning eigenvector eigenvalues and the asymptotic regime of max-plus systems."J. P. Quadrat, Director of Research, International Research Institute "This book is very accessible, providing many examples and a clear road map for learning about max-plus algebra."Bart De Schutter, Delft University of Technology

Muu info

Max Plus at Work is the best English textbook for learning eigenvector eigenvalues and the asymptotic regime of max-plus systems. -- J. P. Quadrat, Director of Research, International Research Institute This book is very accessible, providing many examples and a clear road map for learning about max-plus algebra. -- Bart De Schutter, Delft University of Technology
Preface ix
Prolegomenon
1(10)
Introductory Example
1(2)
On the Notation
3(3)
On Eigenvalues and Eigenvectors
6(1)
Some Modeling Issues
7(1)
Counter and Dater Descriptions
8(1)
Exercises
9(1)
Notes
10(1)
PART I. MAX-PLUS ALGEBRA
11(102)
Max-Plus Algebra
13(15)
Basic Concepts and Definitions
13(4)
Vectors and Matrices
17(3)
A First Max-Plus Model
20(4)
The Projective Space
24(1)
Exercises
25(1)
Notes
26(2)
Spectral Theory
28(19)
Matrices and Graphs
28(8)
Eigenvalues and Eigenvectors
36(6)
Solving Linear Equations
42(2)
Exercises
44(1)
Notes
45(2)
Periodic Behavior and the Cycle-Time Vector
47(25)
Cyclicity and Transient Time
48(8)
The Cycle-Time Vector: Preliminary Results
56(6)
The Cycle-Time Vector: General Results
62(5)
A Sunflower Bouquet
67(2)
Exercises
69(1)
Notes
70(2)
Asymptotic Qualitative Behavior
72(13)
Periodic Regimes
72(2)
Characterization of the Eigenspace
74(5)
Primitive Matrices
79(1)
Limits in the Projective Space
80(2)
Higher-Order Recurrence Relations
82(1)
Exercises
83(1)
Notes
84(1)
Numerical Procedures for Eigenvalues of Irreducible Matrices
85(10)
Karp's Algorithm
85(6)
The Power Algorithm
91(3)
Exercises
94(1)
Notes
94(1)
A Numerical Procedure for Eigenvalues of Reducible Matrices
95(18)
Howard's Algorithm
96(6)
Examples
102(6)
Howard's Algorithm for Higher-Order Models
108(2)
Exercises
110(1)
Notes
111(2)
PART II. TOOLS AND APPLICATIONS
113(48)
Petri Nets
115(11)
Petri Nets and Event Graphs
115(4)
The Autonomous Case
119(3)
The Nonautonomous Case
122(2)
Exercises
124(1)
Notes
125(1)
The Dutch Railway System Captured in a Max-Plus Model
126(14)
The Line System
126(4)
Construction of the Timed Event Graph
130(2)
State Space Description
132(5)
Application of Howard's Algorithm
137(1)
Exercises
138(1)
Notes
139(1)
Delays, Stability Measures, and Results for the Whole Network
140(13)
Propagation of Delays
140(5)
Results for the Whole Dutch Intercity Network
145(3)
Other Modeling Issues
148(3)
Exercises
151(1)
Notes
152(1)
Capacity Assessment
153(8)
Capacity Assessment with Different Types of Trains
153(1)
Capacity Assessment for a Series of Tunnels
154(4)
Exercises
158(1)
Notes
159(2)
PART III. EXTENSIONS
161(40)
Stochastic Max-Plus Systems
163(14)
Basic Definitions and Examples
164(3)
The Subadditive Ergodic Theorem
167(4)
Matrices with Fixed Support
171(3)
Beyond Fixed Support
174(1)
Exercises
175(1)
Notes
176(1)
Min-Max-Plus Systems and Beyond
177(14)
Min-Max-Plus Systems
177(10)
Links to Other Mathematical Areas
187(2)
Exercises
189(1)
Notes
190(1)
Continuous and Synchronized Flows on Networks
191(10)
Dater and Counter Descriptions
191(1)
Continuous Flows without Capacity Constraints
192(5)
Continuous Flows with Capacity Constraints
197(2)
Exercises
199(1)
Notes
200(1)
Bibliography 201(5)
List of Symbols 206(3)
Index 209


Bernd Heidergott is Associate Professor of Mathematics and Statistics at Vrije Universiteit, Amsterdam. He is a research fellow of the Tinbergen Institute. Geert Jan Olsder is Professor of Mathematical System Theory and Deputy Vice-Chancellor at Delft University of Technology. Jacob van der Woude is Associate Professor of Mathematical System Theory at Delft University of Technology.