Muutke küpsiste eelistusi

E-raamat: Maximal nilpotent subalgebras II: A correspondence theorem within solvable associative algebras. With 242 exercises

  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jan-2018
  • Kirjastus: Anchor Academic Publishing
  • Keel: eng
  • ISBN-13: 9783960676966
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jan-2018
  • Kirjastus: Anchor Academic Publishing
  • Keel: eng
  • ISBN-13: 9783960676966
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Within series II we extend the theory of maximal nilpotent substructures to solvable associative algebras, especially for their group of units and their associated Lie algebra. We construct all maximal nilpotent Lie subalgebras and characterize them by simple and double centralizer properties. They possess distinctive attractor and repeller characteristics. Their number of isomorphic classes is finite and can be bounded by Bell numbers. Cartan subalgebras and the Lie nilradical are extremal among all maximal nilpotent Lie subalgebras. The maximal nilpotent Lie subalgebras are connected to the maximal nilpotent subgroups. This correspondence is bijective via forming the group of units and creating the linear span. Cartan subalgebras and Carter subgroups as well as the Lie nilradical and the Fitting subgroup are linked by this correspondence. All partners possess the same class of nilpotency based on a theorem of Xiankun Du. By using this correspondence we transfer all results to maximal nilpotent subgroups of the group of units. Carter subgroups and the Fitting subgroup turn out to be extremal among all maximal nilpotent subgroups. All four extremal substructures are proven to be Fischer subgroups, Fischer subalgebras, nilpotent injectors and projectors. Numerous examples (like group algebras and Solomon (Tits-) algebras) illustrate the results to the reader. Within the numerous exercises these results can be applied by the reader to get a deeper insight in this theory.