Muutke küpsiste eelistusi

E-raamat: Maximal Solvable Subgroups of Finite Classical Groups

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2346
  • Ilmumisaeg: 26-Jul-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031629150
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 98,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2346
  • Ilmumisaeg: 26-Jul-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031629150
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book studies maximal solvable subgroups of classical groups over finite fields. It provides the first modern account of Camille Jordan's classical results, and extends them, giving a classification of maximal irreducible solvable subgroups of general linear groups, symplectic groups, and orthogonal groups over arbitrary finite fields.





A subgroup of a group G is said to be maximal solvable if it is maximal among the solvable subgroups of G. The history of this notion goes back to Jordans Traité (1870), in which he provided a classification of maximal solvable subgroups of symmetric groups. The main difficulty is in the primitive case, which leads to the problem of classifying maximal irreducible solvable subgroups of general linear groups over a field of prime order. One purpose of this monograph is expository: to give a proof of Jordans classification in modern terms. More generally, the aim is to generalize these results to classical groups over arbitrary finite fields, and to provide other results of interest related to irreducible solvable matrix groups.





The text will be accessible to graduate students and researchers interested in primitive permutation groups, irreducible matrix groups, and related topics in group theory and representation theory. The detailed introduction will appeal to those interested in the historical background of Jordans work.

Arvustused

The book is enriched with numerous worked examples and summary tables, making the results more accessible to readers. This book is a wonderful resource for mathematicians studying finite groups or related fields like representation theory. The author combines clear explanations with rigorous proofs, making the material approachable for readers with a solid foundation in group theory." (Kvanç Ersoy, zbMATH 1553.20001, 2025)

- Introduction.- Basic structure of maximal irreducible solvable
subgroups.- Extraspecial groups.- Metrically primitive maximal irreducible
solvable subgroups.- Basic properties of GB ,(X1, . . . ,Xk).- Fixed point
spaces and abelian subgroups.- Maximality of the groups constructed.-
Examples.
Mikko Korhonen is a research assistant professor at the Southern University of Science and Technology, Shenzhen, China. His main research interests are in topics related to the representation theory and subgroup structure of linear algebraic groups and finite groups. Previously, he was a postdoctoral research fellow at the University of Manchester, and he obtained his PhD from the École Polytechnique Fédérale de Lausanne.