Muutke küpsiste eelistusi

E-raamat: McShane Identities for Higher Teichmueller Theory and the Goncharov-Shen Potential

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We derive generalizations of McShane's identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman-Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShanetype inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants:we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric"--
Yi Huang, Tsinghua University, Beijing, China.

Zhe Sun, University of Science and Technology of China, Anhui, China.