Muutke küpsiste eelistusi

E-raamat: Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all $k\in \mathbb Z^*$. The authors endow $\mathbb A^n$ with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map $\Phi ^h$ of a Hamiltonian $h: \mathbb A^n\to \mathbb R$ which depends only on the action variables, has no nonempty wandering domains.

The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of $\Phi ^h$, in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the ``quantitative Hamiltonian perturbation theory'' initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.
Introduction
Presentation of the results
Stability theory for Gevrey near-integrable maps
A quantitative KAM result--proof of Part (i) of Theorem D
Coupling devices, multi-dimensional periodic domains, wandering domains
Appendices
Appendix A. Algebraic operations in $\mathscr O_k$
Appendix B. Estimates on Gevrey maps
Appendix C. Generating functions for exact symplectic $C^\infty $ maps
Appendix D. Proof of Lemma 2.5
Bibliography.
Laurent Lazzarini, Universite Paris VI, France.

Jean-Pierre Marco, Universite Paris VI, France.

David Sauzin, Observatoire de Paris, France.