Muutke küpsiste eelistusi

E-raamat: Measure Theory and Integration

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Sep-2023
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789819928828
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Sep-2023
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789819928828
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook contains a detailed and thorough exposition of topics in measure theory and integration. With abundant solved examples and more than 200 problems, the book is written in a motivational and student-friendly manner. Targeted to senior undergraduate and graduate courses in mathematics, it provides a detailed and thorough explanation of all the concepts. Suitable for independent study, the book, the first of the three volumes, contains topics on measure theory, measurable functions, Lebesgue integration, Lebesgue spaces, and abstract measure theory. 


Chapter
1. Measure Theory.
Chapter
2. Measurable Functions.
Chapter
3. Lebesgue Integration.
Chapter
4. Lebesgue Spaces.
Chapter
5. Abstract Measure Theory.

Ammar Khanfer earned his Ph.D. from Wichita State University, USA. His area of interest is analysis and partial differential equations (PDEs), focusing on the interface and links between elliptic PDEs and hypergeometry. He has notably contributed to the field by providing prototypes studying the behavior of generalized solutions of elliptic PDEs in higher dimensions in connection to the behavior of hypersurfaces near nonsmooth boundaries. He also works on the qualitative theory of differential equations, and in the area of inverse problems of mathematical physics. He has published articles of high quality in reputable journals.  





Ammar taught at several universities in the USA: Western Michigan University, Wichita State University, and Southwestern College in Winfield. He was a member of the Academy of Inquiry Based Learning (AIBL) in the USA. During the period 20082014, he participated in AIBL workshops and conferences on effective teaching methodologies and strategies of creative thinking, which made an impact on his engaging and motivational writing style. He then moved to Saudi Arabia to teach at Imam Mohammad Ibn Saud Islamic University, where he taught and supervised undergraduate and graduate students of mathematics. Furthermore, he was appointed as coordinator of the PhD program establishment committee in the department of mathematics. In 2020, he moved to Prince Sultan University in Riyadh, and has been teaching there since then.