Muutke küpsiste eelistusi

E-raamat: Measure-Valued Branching Markov Processes

  • Formaat - PDF+DRM
  • Hind: 148,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes.

Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses.

This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.


Preface to the Second Edition.- Preface to the First Edition.-
Conventions and Notations.-
1. Random Measures on Metric Spaces.-
2.
Measure-Valued Branching Processes.-
3. One-Dimensional Branching Processes.-
4. Branching Particle Systems.-
5. Basic Regularities of Superprocesses.-
6.
Constructions by Transformations.-
7. Martingale Problems of Superprocesses.-
8. Entrance Laws and Kuznetsov Measures.-
9. Structures of Independent
Immigration.-
10. One-Dimensional Stochastic Equations.-
11. Path-Valued
Processes and Stochastic Flows.-
12. State-Dependent Immigration Structures.-
13. Generalized Ornstein-Uhlenbeck Processes.-
14. Small-Branching
Fluctuation Limits.- A. Markov Processes.- References.- Subject Index.-
Symbol Index. 
Zenghu Li is a Changjiang Scholar Distinguished Professor at Beijing Normal University and a Fellow of the Institute of Mathematical Statistics. He serves on the editorial board for several mathematical journals and book series, including Acta Mathematica Sinica and Stochastic Processes and Their Applications. His research interests include branching Markov processes, measure-valued Markov processes, stochastic differential equations and applications.