Muutke küpsiste eelistusi

E-raamat: Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Besides being non-invasive, magnetic resonance imaging (MRI) has proven vital to understanding both normal and abnormal cardiac functioning as the only technique to date capable of imaging detailed intramural motion within the myocardium, as Amini (Washington State U., St. Louis, MO) and Prince (Johns Hopkins U., Baltimore, MD) explain. Eleven chapters by contributors from the US, Germany, Turkey, and New Zealand overview such topics as the relationship between stress and strain in the myocardium, methods and models for analyzing tagged cardiac MRI data, and clinical applications. Includes 11 color plates. This volume can serve as a tutorial for physicians, biomedical engineers, computer scientists, and others interested in the latest advances in cardiovascular MRI. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models describes the latest imaging and imag analysis techniques that have been developed at leading centers for the visualization, analysis, and understanding of normal and abnormal cardiac motion with magnetic resonance imaging (MRI). The use of MRI in measuring cardiac motion is particularly important because MRI is non-invasive, and it is the only modality capable of imaging detailed intramural motion within the myocardium. Biomedical engineers, medical physicists, computer scientists, and physicians interested in learning about the latest advances in cardiovascular MRI should find this book to be a valuable educational resource. In particular, it is more tutorial in nature than most of the technical papers where the research was originally published. Practitioners and researchers working in the field of cardiovascular MRI will find the book to be filled with practical technical details and references to other work, enabling the implementation of existing methods and serving as a basis for further research in the area.
Contributors xi
Preface xiii
Regional Stress and Strain in Healthy and Diseased Ventricular Myocardium
Introduction
1(1)
Ventricular Geometry and Structure
2(1)
Regional Myocardial Mechanics
3(4)
Engineering Models of Wall Stress
7(1)
Analyzing Wall Strain Distributions
8(1)
Regional Strain Distributions in Disease
9(1)
Future Directions
10(7)
Acknowledgments
11(1)
References for
Chapter 1
11(6)
Clinical Applications of Cardiac Tagging
Introduction
17(1)
Imaging Techniques
18(1)
Tagged Image Data Analysis
19(3)
MR Tagging in Normal Human Heart
22(2)
MR Tagging in Ischemic Heart Disease
24(4)
MR Tagging in Left Ventricular Hypertrophy
28(1)
Cardiomyopathies
29(1)
Right Ventricular Mechanics
30(1)
Pericardial Constriction
30(1)
Summary
30(7)
Acknowledgments
31(1)
References for
Chapter 2
31(6)
Finite Element Modeling for Three-Dimensional Motion Reconstruction and Analysis
Introduction
37(1)
The Finite Element Model
38(5)
Basis Functions
39(1)
Global Parameters
40(1)
Coordinate Systems
40(2)
Kinematics
42(1)
Model Tags: 3D Formulation
43(5)
Geometric Fits
43(1)
Model Tag 3D Fitting
44(1)
Image Analysis
45(1)
Minimization
46(2)
Reconstruction of RV Surface Deformation
48(3)
RV Free wall geometry
49(1)
Model Tags: Surface Formulation
49(2)
Principal Component Analysis
51(2)
Generating the Data Set
53(1)
PCA of Normal Geometry and Deformation
53(2)
Future Work
55(4)
References for
Chapter 3
56(3)
Modeling and analysis of the RV and LV from MRI-SPAMM
Introduction
59(2)
Biventricular Model Geometry
61(3)
RV Contour Segmentation
62(1)
Processing Contour Data
62(2)
Finite element mesh generation
64(1)
3D RV and LV motion reconstruction
64(8)
MRI Input Data
65(1)
Model Dynamics
65(2)
External Forces from SPAMM data
67(2)
External Forces from Contour Data
69(1)
Internal Forces Due To Stiffness
70(2)
Motion and Deformation Analysis
72(2)
Motion Parameters
72(1)
Data Analysis
73(1)
Results
74(10)
Model fitting behavior
75(1)
Validation studies
75(4)
Clinical Data
79(5)
Discussion
84(1)
Conclusions and Future Work
85(6)
Acknowledgments
85(1)
Appendix
85(1)
Finite Element Shape Functions
85(1)
Strain Calculation Using Finite Elements
86(3)
References for
Chapter 4
89(2)
Motion Analysis of the Whole Heart
Motivation and Background
91(1)
Introduction and Background
92(6)
Anatomy and Physiology
93(1)
Studying Right Ventricular and Atrial Dynamics
94(1)
MR Imaging of Right Ventricular and Atrial Function
95(2)
B-Spline based Motion Tracking
97(1)
Methods
98(8)
MR Imaging
98(2)
Ventricular Motion Analysis
100(1)
Atrial Surface Fitting
101(2)
Calculation of the Atrial Motion Field
103(3)
Results
106(3)
Motion Analysis of Right and Left Ventricles
106(2)
Motion Analysis of Atria
108(1)
Discussion
109(3)
Conclusion
112(7)
Acknowledgments
113(1)
References for
Chapter 5
113(6)
Harmonic Phase MRI
Introduction
119(1)
A Harmonic Model of Tagged MR Images
120(3)
HARP Motion Measurement Principles
123(4)
Apparent Motion
125(1)
Spatial and Temporal Derivatives
126(1)
CINE-HARP (CHARP) Methods
127(12)
Tracking Motion
127(3)
Lagrangian Strain
130(4)
Velocity Fields
134(3)
Strain-rate Maps
137(2)
Single-shot HARP (SHARP) Methods
139(7)
Tagline Synthesis
139(1)
Radial and Circumferential and Eulerian Strain
140(2)
Minimum and Maximum Eulerian Strain
142(3)
Contraction Angle
145(1)
Combining CHARP and SHARP Methods
146(1)
Summary and Conclusion
146(5)
Acknowledgments
148(1)
Reference for
Chapter 6
149(2)
Automated Tag Detection
Introduction
151(1)
Signal Models
152(4)
Tagged Myocardium
153(2)
Untagged Tissue
155(1)
Tag Center Estimation
156(4)
Single Tag Center Estimation
156(2)
Tag Line Estimation
158(2)
Hypothesis Testing
160(3)
Myocardium Detection
161(1)
Tag Line Detection
161(1)
Removal of False Tag Points
162(1)
Algorithm Implementation
163(6)
Black Blood Images
163(3)
White Blood Images
166(3)
In Vivo Experiments
169(2)
Imaging Protocol
169(1)
Black Blood Images
169(2)
White Blood Images
171(1)
Discussion
171(12)
Acknowledgments
177(1)
Appendix
178(1)
Likelihood Function Derivative
178(1)
References for
Chapter 7
179(4)
Analysis of Tagged MR Cardiac Images with B-spline Models
Introduction
183(3)
B-spline basics
186(2)
Definitions and Notations
186(1)
Properties
187(1)
Coupled B-snake Grids
188(2)
Constrained Thin-Plate Spline Reconstruction
190(14)
Solution Using Subspace Approximations
193(3)
Validations
196(7)
Myocardial Strains
203(1)
Measurement of 3D Motion of Myocardial Beads
204(10)
Imaging Protocol
205(1)
Reconstruction of Tag Planes
206(1)
Computing 3D Coordinates of Myocardial Beads
207(6)
Validations
213(1)
Conclusions
214(1)
Acknowledgments
215(4)
References for
Chapter 8
215(4)
MR Physics and Imaging of Phase Contrast MRI
Introduction
219(1)
Basic Principles of Phase Contrast MRI
220(3)
Flow and Motion Compensation
221(1)
Velocity Encoding
221(2)
Implementation Issues
223(9)
Gradient Echo imaging
223(1)
Respiratory Motion
224(1)
Segmented Scans
225(1)
Black Blood Preparation
225(1)
Measurement Timing and Pulse Sequence Design
226(2)
Multi Echo Approaches
228(2)
Measurement Timing
230(1)
View Sharing Approaches
231(1)
Data Processing
232(5)
Results
237(6)
Volunteers
237(1)
Patients
238(5)
Discussion
243(14)
Appendix
245(1)
Signal Phase
245(1)
References for
Chapter 9
246(11)
Myocardial Spatiotemporal Tracking
Introduction
257(7)
Imaging Cardiac Motion
258(1)
Mapping Velocity With Phase Contrast MRI
259(3)
Analyzing Motion
262(2)
DMESH Motion/Strain Mapping
264(7)
The Spatiotemporal Finite Element Model
265(2)
The DMESH Tracking Algorithm
267(1)
Reproducibility Analysis
268(1)
Lagrangian Strain Field Computation
269(1)
Extended Use of DMESH Tracking
270(1)
Experiments
271(9)
Computer simulation studies
271(4)
In vitro and in vivo studies
275(2)
Combined use of displacement and velocity data
277(3)
Discussion
280(9)
Acknowledgments
282(1)
References for
Chapter 10
283(6)
Computational Platforms for Integrated Cardiac Image Analysis
Introduction
289(1)
Obtaining Estimates of Cardiac Displacements
290(6)
Methods Relying on Magnetic Resonance Tagging
290(1)
Methods Relying on Phase Contrast MRI
291(1)
Computer-Vision Based Methods
292(1)
The Shape-Based Tracking Approach
293(3)
Modeling used for Interpolation and Smoothing
296(9)
The Strain Tensor
297(3)
Material Models
300(3)
A Bayesian Estimation Framework
303(2)
Experimental Results
305(4)
Pre and post-occlusion comparison
306(2)
Shape-Based Estimates vs MR Tagging
308(1)
Future Research Directions
309(6)
Acknowledgments
310(1)
References for
Chapter 11
310(5)
Index 315