|
1 Overview with Some Definitions and Mathematics |
|
|
1 | (20) |
|
|
1 | (4) |
|
|
5 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.5 Scaling: Nondimensional Equations of Motion |
|
|
9 | (2) |
|
1.6 Complex Numbers and Trigonometric Functions |
|
|
11 | (10) |
|
1.6.1 Harmonic Functions and Periodicity |
|
|
15 | (2) |
|
|
17 | (3) |
|
|
20 | (1) |
|
2 One Degree of Freedom Systems |
|
|
21 | (58) |
|
|
21 | (5) |
|
2.1.1 An Aside About Friction |
|
|
21 | (3) |
|
2.1.2 The One Degree of Freedom Equation of Motion |
|
|
24 | (2) |
|
2.2 Mathematical Analysis of the One Degree of Freedom Systems |
|
|
26 | (20) |
|
2.2.1 Undamped Free Oscillations |
|
|
26 | (7) |
|
2.2.2 Damped Unforced Systems |
|
|
33 | (5) |
|
|
38 | (3) |
|
2.2.4 The Particular Solution for a Harmonically Forced Damped System |
|
|
41 | (5) |
|
|
46 | (12) |
|
2.3.1 Natural Frequencies Using Energy |
|
|
46 | (4) |
|
2.3.2 A General Particular Solution to Eq. (2.4) |
|
|
50 | (2) |
|
2.3.3 Combining Springs and Dampers |
|
|
52 | (2) |
|
2.3.4 Measuring the Damping Ratio |
|
|
54 | (2) |
|
|
56 | (2) |
|
|
58 | (11) |
|
2.4.1 Unbalanced Rotating Machinery |
|
|
58 | (4) |
|
2.4.2 Simple Air Bag Sensor |
|
|
62 | (3) |
|
2.4.3 Seismometers and Accelerometers |
|
|
65 | (4) |
|
2.5 Preview of Things to Come |
|
|
69 | (10) |
|
2.5.1 Introduction to Block Diagrams |
|
|
69 | (3) |
|
2.5.2 Introduction to Simulation: The Simple Pendulum |
|
|
72 | (3) |
|
|
75 | (3) |
|
|
78 | (1) |
|
3 More Than One Degree of Freedom Systems and the Euler-Lagrange Process |
|
|
79 | (50) |
|
3.1 Introduction: Degrees of Freedom |
|
|
79 | (5) |
|
3.2 The Euler-Lagrange Equations |
|
|
84 | (12) |
|
3.2.1 The Basic Undamped, Force-Free Euler-Lagrange Equations |
|
|
85 | (8) |
|
3.2.2 External Forces (and Torques) |
|
|
93 | (2) |
|
3.2.3 Dissipation and the Rayleigh Dissipation Function |
|
|
95 | (1) |
|
3.3 Linearization and Stability I |
|
|
96 | (9) |
|
3.4 Some Two Degree of Freedom Systems |
|
|
105 | (9) |
|
|
105 | (3) |
|
3.4.2 The Pendulum on a Disk |
|
|
108 | (2) |
|
3.4.3 Vibration Absorption |
|
|
110 | (4) |
|
3.5 Electromechanical Systems |
|
|
114 | (12) |
|
|
114 | (9) |
|
3.5.2 Magnetic Suspension |
|
|
123 | (3) |
|
|
126 | (3) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (44) |
|
|
129 | (29) |
|
|
129 | (8) |
|
|
137 | (5) |
|
|
142 | (16) |
|
4.2 Continuous Elastic Systems |
|
|
158 | (15) |
|
|
158 | (2) |
|
4.2.2 The Vibrating String |
|
|
160 | (3) |
|
4.2.3 Longitudinal Vibrations of a Slender Beam |
|
|
163 | (2) |
|
4.2.4 Transverse Vibrations of a Slender Beam |
|
|
165 | (3) |
|
|
168 | (3) |
|
|
171 | (2) |
|
|
173 | (28) |
|
5.1 Vibration Measurement |
|
|
173 | (8) |
|
5.2 Fourier Series and Transforms and Power Spectra |
|
|
181 | (20) |
|
|
182 | (9) |
|
|
191 | (3) |
|
5.2.3 The Nyquist Phenomenon |
|
|
194 | (4) |
|
|
198 | (1) |
|
|
199 | (2) |
|
6 State Space, Equilibrium, Linearization, and Stability |
|
|
201 | (56) |
|
|
201 | (10) |
|
6.1.1 Some Comments on Eigenvalues and Eigenvectors |
|
|
205 | (6) |
|
6.2 Solving the General Inhomogeneous System of Linear Equations |
|
|
211 | (11) |
|
6.2.1 The State Transition Matrix |
|
|
211 | (4) |
|
|
215 | (6) |
|
|
221 | (1) |
|
6.3 Equilibrium, Linearization, and Stability |
|
|
222 | (7) |
|
|
222 | (1) |
|
6.3.2 Linearization in State Space |
|
|
223 | (4) |
|
|
227 | (2) |
|
6.4 Putting It All Together |
|
|
229 | (15) |
|
|
232 | (12) |
|
|
244 | (7) |
|
6.5.1 The Simple Pendulum |
|
|
245 | (4) |
|
6.5.2 The van der Pol Oscillator |
|
|
249 | (2) |
|
|
251 | (6) |
|
6.6.1 Four Linear Electromechanical Systems for Future Reference |
|
|
251 | (3) |
|
|
254 | (2) |
|
|
256 | (1) |
|
|
257 | (32) |
|
|
257 | (14) |
|
7.1.1 What Do We Mean by Control? |
|
|
257 | (2) |
|
7.1.2 PID Control of a Single-Input--Single-Output System |
|
|
259 | (12) |
|
7.2 The Laplace Transform |
|
|
271 | (6) |
|
|
271 | (2) |
|
7.2.2 Solving Single Linear Ordinary Differential Equations of Any Order |
|
|
273 | (3) |
|
7.2.3 Solving Systems of Linear Differential Equations |
|
|
276 | (1) |
|
7.3 Control in the Frequency Domain |
|
|
277 | (8) |
|
7.4 The Connection Between Transfer Functions and State Space |
|
|
285 | (4) |
|
|
286 | (2) |
|
|
288 | (1) |
|
8 The Basics of State Space Control |
|
|
289 | (44) |
|
|
289 | (6) |
|
8.1.1 Review of the Process: A Meta-algorithm |
|
|
290 | (2) |
|
8.1.2 Transfer Function vs. State Space |
|
|
292 | (3) |
|
|
295 | (5) |
|
8.2.1 The Controllability Theorem |
|
|
295 | (3) |
|
|
298 | (2) |
|
8.3 Using the Companion Form to Control a System |
|
|
300 | (8) |
|
8.3.1 Application to the Simple (4D) Overhead Crane |
|
|
303 | (5) |
|
|
308 | (19) |
|
8.4.1 More on Pole Placement |
|
|
316 | (6) |
|
|
322 | (5) |
|
|
327 | (6) |
|
|
329 | (2) |
|
|
331 | (2) |
|
|
333 | (28) |
|
|
333 | (1) |
|
|
334 | (16) |
|
|
334 | (10) |
|
|
344 | (6) |
|
9.3 The High-Inductance Overhead Crane |
|
|
350 | (7) |
|
|
351 | (2) |
|
|
353 | (4) |
|
|
357 | (4) |
|
|
358 | (1) |
|
|
359 | (2) |
|
|
361 | (34) |
|
|
361 | (1) |
|
10.2 Tracking with Full State Feedback |
|
|
362 | (11) |
|
10.2.1 Reference Dynamics |
|
|
363 | (3) |
|
10.2.2 The Reference State and the Matrix Ar |
|
|
366 | (7) |
|
10.3 The Overhead Crane as an Extended Example of Tracking Control |
|
|
373 | (14) |
|
|
373 | (1) |
|
10.3.2 Tracking a Sinusoidal Path |
|
|
373 | (10) |
|
10.3.3 Tracking a More Useful Position |
|
|
383 | (4) |
|
10.4 Tracking with an Observer |
|
|
387 | (3) |
|
10.5 Summary of Linear Control |
|
|
390 | (5) |
|
|
391 | (4) |
|
11 Introduction to Nonlinear Control |
|
|
395 | (36) |
|
11.1 Feedback Linearization |
|
|
395 | (14) |
|
11.1.1 A Symbolic Third-Order System |
|
|
397 | (12) |
|
11.2 Nonlinear Control of a Kinematic Chain |
|
|
409 | (6) |
|
|
415 | (16) |
|
11.3.1 Some Comments on Three-Dimensional Motion |
|
|
417 | (6) |
|
|
423 | (6) |
|
|
429 | (2) |
References |
|
431 | (2) |
Index |
|
433 | |