Muutke küpsiste eelistusi

E-raamat: Medical Device Technologies: A Systems Based Overview Using Engineering Standards

(Department of Engineering, Loyola University Chicago, IL, USA)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Nov-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128119853
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 130,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Nov-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128119853
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Medical Device Technologies: A Systems Based Overview Using Engineering Standards, Second Edition, is a comprehensive overview of medical device technology, with a unified approach to each device area covering technical operation, clinical need, regulatory issues and standards and historical devices. It takes a systems-based view, balancing breadth with depth to give an accessible introduction to this field. Close ties are drawn between the design, the product and the patient. Exercises at the end of each chapter include traditional homework problems, analysis exercises and four questions from assigned primary literature. Eight laboratory experiments in both electrical and mechanical medical devices are explored.

Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. This systems approach enables the reader to quickly identify the relationships between devices. An accompanying instructor site containing answers to end of chapter exercises, image collections, datasets and solutions for the lab experiments is also included.

  • Covers current research, design issues and engineering standards
  • Includes three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation
  • Presents exercises at the end of each chapter, including problems, analysis exercises and four questions from assigned primary literature
  • Provides eight laboratory experiments that are detailed to provide hands-on reinforcement of device concepts

Arvustused

"As indicated and implied by the title, this text covers medical device technologies using a practical (engineering) systems approach to medical devices. The author, by virtue of her academic and industrial experiences, is professionally and experientially qualified to present this material to the readers. Medical imaging systems are excluded (per the author), as many programs offer a separate course in this area." --IEEE

About the Author xxiii
Preface xxv
Nomenclature xxix
PART 1 MEDICAL DEVICES
Chapter 1 Diagnosis and therapy
5(40)
Medical device definitions
6(1)
Clinical need
7(1)
Medical devices versus medical instruments
7(6)
Instruments make measurements
7(3)
Input dynamic range and frequency response
10(1)
Accuracy, bias, and precision
11(2)
Noise sources
13(1)
Sensors
13(10)
Surface electrodes
13(4)
Pressure sensors
17(3)
Thermistors
20(1)
Photodiodes
21(2)
Patient and operator safety
23(2)
Leakage current
24(1)
Defibrillation protection
25(1)
Amplification
25(3)
Operational amplifiers
25(1)
Biopotential amplifiers
26(2)
Data acquisition
28(5)
Nyquist sampling theorem
30(3)
Medical electrical stimulators
33(4)
Stimulator batteries
35(2)
Systems
37(1)
Summary
38(1)
Exercises
39(2)
References
41(4)
Chapter 2 Electrocardiographs
45(28)
Cardiac electrical conduction
46(3)
Cardiac anatomy
46(1)
Spread of action potentials
46(3)
Standard leads
49(5)
Two arrhythmia classes
54(2)
Irregular rhythms
54(2)
Escape
56(1)
Clinical need
56(1)
Historic devices
56(3)
Early devices
57(1)
Enabling technology: string galvanometer
58(1)
System description and diagram
59(6)
Arrhythmia detection accuracy
60(5)
Key features from engineering standards
65(3)
Input dynamic range
65(1)
Frequency response
65(2)
System noise level
67(1)
Arrhythmia detection
67(1)
Leads-off detection
67(1)
Summary
68(1)
Exercises
69(1)
References
70(3)
Chapter 3 Pacemakers
73(30)
Two arrhythmia classes
74(5)
Premature beats
74(2)
Heart block
76(3)
Heart failure
79(1)
Tissue response to stimulation voltage
79(1)
Clinical need
80(1)
Historic devices
80(3)
Early devices
81(1)
Enabling technology: Ruben-Mallory zinc mercuric oxide battery
82(1)
System description and diagram
83(10)
Leads
84(3)
Pulse generator
87(4)
Pacemaker programmer
91(1)
Remote monitor
92(1)
Key features from engineering standards
93(3)
Lead connection
93(1)
Mechanical integrity of leads
94(1)
Battery
95(1)
Sensitivity
95(1)
Minimum susceptibility to electromagnetic interference
96(1)
Temporary cardiac pacing
96(1)
Summary
97(1)
Exercises
98(1)
References
99(4)
Chapter 4 External defibrillators
103(22)
Tachyarrhythmias
104(3)
Paroxysmal Tachycardia
104(2)
Flutter
106(1)
Fibrillation
107(1)
Sudden cardiac arrest and cardiopulmonary resuscitation
107(1)
Defibrillation mechanism and threshold
108(2)
Clinical need
110(1)
Historic devices
110(6)
Early external defibrillator devices
111(1)
Enabling technology: Lown-Edmark waveform
111(3)
Early automated external defibrillator devices
114(1)
Enabling technology: biphasic truncated exponential waveform
115(1)
System description and diagram
116(3)
Thoracic impedance
118(1)
Key features from engineering standards
119(2)
Battery charging time
119(1)
Capacitor discharge accuracy
119(1)
Synchronization
120(1)
Rhythm recognition detection accuracy
120(1)
Recovery after defibrillation
120(1)
Summary
121(1)
Exercises
122(1)
References
123(2)
Chapter 5 Implantable cardioverter defibrillators
125(24)
Wound-healing response
126(4)
Pulse generator biocompatibility
129(1)
Clinical need
130(2)
Historic devices
132(3)
Early devices
132(2)
Enabling technologies: transvenous defibrillation and integrated leads
134(1)
System description and diagram
135(4)
Defibrillation threshold tests
136(1)
Arrhythmia detection
137(2)
Key features from engineering standards
139(2)
Biologic effects
139(1)
Mechanical integrity of leads
139(1)
Delivered voltage and energy
140(1)
Battery discharge and warning
140(1)
Arrhythmia detection accuracy
140(1)
FDA case study: Guidant ICD recall
141(3)
Public Guidant actions
141(1)
Internal Guidant actions
142(1)
FDA responses
143(1)
Aftermath
143(1)
Summary
144(1)
Exercises
144(1)
References
145(4)
Chapter 6 Heart valves
149(30)
Cardiac mechanics
150(6)
Cardiac cycle
151(2)
Fluid mechanics
153(3)
Blood coagulation
156(1)
Mechanical valve biocompatibility
156(1)
Clinical need
157(1)
Historic devices
158(4)
Early devices
159(1)
Enabling technology: ball and cage valve
159(1)
Enabling technology: glutaraldehyde treatment
160(2)
Enabling technology: transcatheter valve
162(1)
System description and diagram
162(4)
Comparison of velocities and turbulent shear stresses
164(2)
FDA case study: Bjork-Shiley heart valve
166(5)
Public Shiley actions
168(1)
Internal Shiley actions
169(1)
FDA responses
170(1)
Aftermath
171(1)
Key features from engineering standards
171(2)
Hydrodynamic performance
172(1)
Component fatigue
172(1)
One-year clinical study
173(1)
Clinical study long-term follow-up
173(1)
Biocompatibility
173(1)
Summary
173(1)
Exercises
174(1)
References
175(4)
Chapter 7 Blood pressure monitors
179(18)
Blood pressure propagation
179(3)
Vital signs
182(1)
Clinical need
182(1)
Historic devices
183(2)
Early devices
183(1)
Enabling technology: auscultation
183(1)
Enabling technology: oscillometry
184(1)
System descriptions and diagrams
185(6)
Measurement equivalency
189(1)
Consumer blood pressure monitor accuracy
189(2)
Key features from engineering standards
191(2)
Monitor life
192(1)
Monitor cuff pressures
192(1)
Monitor accuracy with auscultatory method as reference standard
192(1)
Monitor accuracy with intraarterial method as reference standard
192(1)
Transducer accuracy
193(1)
Summary
193(1)
Exercises
194(1)
References
195(2)
Chapter 8 Catheters, bare metal stents, and synthetic grafts
197(32)
Atherosclerosis
198(3)
Percutaneous coronary interventions
201(3)
Aneurysms
204(1)
Clinical need
205(2)
Historic devices
207(2)
Early devices
207(1)
Enabling technology: percutaneous transluminal coronary angioplasty
207(1)
Enabling technology: Vinyon "N" cloth
208(1)
System descriptions and diagrams
209(9)
Cardiac catheterization procedures
210(6)
Bare metal stents
216(1)
Synthetic grafts
217(1)
FDA case study: Guidant Ancure endovascular graft system
218(4)
Public Guidant actions
220(1)
Internal Guidant actions
220(1)
FDA responses
221(1)
Aftermath
221(1)
Key features from engineering standards
222(2)
Balloon rated burst pressure
222(1)
Elastic recoil
222(1)
Microscopic porosity
223(1)
Biocompatibility
223(1)
In vivo clinical study
223(1)
Summary
224(1)
Exercises
225(1)
References
225(4)
Chapter 9 Hemodialysis delivery systems
229(28)
Body fluid compartments
232(1)
Renal anatomy and physiology
233(3)
Urine formation
235(1)
Regulation of water and electrolyte balances
236(1)
Renal replacement therapies
236(3)
Dialysis adequacy through urea modeling
239(2)
Clinical need
241(2)
Historic devices
243(2)
Early devices
243(1)
Enabling technology: external arteriovenous fistula
244(1)
System description and diagram
245(4)
Hemodialyzers
246(1)
Hemodialysis delivery systems
247(2)
Key features from engineering standards
249(3)
Hemodialyzer clearance
250(1)
Blood circuit air protection
251(1)
Temperature monitoring
251(1)
Ultrafiltration control system
251(1)
Blood leak detection
252(1)
Summary
252(1)
Exercises
253(1)
References
254(3)
Chapter 10 Mechanical ventilators
257(24)
Pulmonary physiology
258(6)
Pulmonary blood flow
258(2)
Pulmonary ventilation
260(3)
Gas diffusion
263(1)
Ventilator mechanics
264(3)
Clinical need
267(1)
Historic devices
268(2)
Early devices
268(2)
Enabling technology: positive-pressure ventilation
270(1)
System description and diagram
270(4)
Common modes of mechanical ventilation
271(1)
Noninvasive ventilation
272(2)
Key features from engineering standards
274(2)
Protection from interruption of power supply
275(1)
Maximum pressure to patient
275(1)
Accuracy for pressure-controlled breath type
275(1)
Oxygen monitor
276(1)
Protection from breathing system leakage
276(1)
Summary
276(1)
Exercises
277(1)
References
278(3)
Chapter 11 Pulse oximeters
281(24)
Oxygen transport in blood
282(4)
Hemoglobin
282(1)
Oxyhemoglobin dissociation curve
282(3)
Carbon monoxide displacement
285(1)
Beer-Lambert law
286(2)
Adaptive filtering
288(2)
Clinical need
290(1)
Historic devices
290(6)
Early devices
290(2)
Enabling technology: calibration curve
292(1)
Enabling technology: adaptive filtering
292(4)
System description and diagram
296(2)
Home pulse oximeters
297(1)
Key features from engineering standards
298(2)
SpO2 accuracy
298(1)
Accuracy under conditions of motion
299(1)
Accuracy under conditions of low perfusion
299(1)
Signal inadequacy indication
299(1)
Protection from excessive temperatures
299(1)
Respiration monitors
300(1)
Summary
301(1)
Exercises
301(1)
References
302(3)
Chapter 12 Thermometers
305(22)
Thermoregulation physiology
306(5)
Mechanisms of heat loss
306(2)
Thermoregulation anatomy
308(2)
Thermoregulation
310(1)
Skin temperature versus core temperature
311(1)
Clinical need
311(1)
Historic devices
312(2)
Early Devices
312(1)
Enabling technology: six-inch mercury thermometer
312(2)
System descriptions and diagrams
314(4)
Simple thermometer
314(1)
Digital electronic thermometer
314(2)
Infrared thermometer
316(2)
Key features from engineering standards
318(3)
Electronic thermometer accuracy
318(2)
Maximum permissible laboratory error for ear IR thermometer
320(1)
Maximum permissible laboratory error for skin IR thermometer
320(1)
IR thermometer clinical accuracy
320(1)
Probe cover physical integrity
321(1)
FDA consensus standards for accuracy
321(2)
Summary
323(1)
Exercises
323(1)
References
324(3)
Chapter 13 Electroencephalographs
327(22)
Brain physiology
328(6)
Neural current flow
329(2)
Generation of electroencephalograms
331(3)
Original 10-20 system
334(3)
EEG electrodes
335(1)
Montages
336(1)
Analysis
336(1)
Clinical need
337(3)
Epilepsy
337(1)
Sleep disorders
338(2)
Historic devices
340(1)
Early devices
340(1)
Enabling technology: double-coil galvanometer
340(1)
System description and diagram
341(1)
Key features from engineering standards
342(1)
Electrostatic discharge prevention
342(1)
Frequency response
342(1)
Bispectral index monitors
343(1)
Summary
344(1)
Exercises
345(1)
References
346(3)
Chapter 14 Deep brain stimulators
349(24)
Basal ganglia
351(2)
Parkinson's disease
352(1)
Levodopa therapy
353(1)
Target localization
353(3)
Clinical need
356(1)
Historic devices
356(2)
Early devices
357(1)
Enabling technology: replacement of ablation by stimulation
357(1)
System description and diagram
358(7)
Leads
360(2)
Implantable pulse generator
362(1)
Programmers
363(1)
Closed-loop control
363(2)
Key features from engineering standards
365(2)
Stimulation pulse characteristics
365(1)
Battery indication
365(1)
Biologic effects
365(1)
Immunity from electromagnetic interference
366(1)
Protection from harm caused by magnetically-induced force
366(1)
Summary
367(1)
Exercises
368(1)
References
369(4)
Chapter 15 Cochlear implants
373(24)
Auditory physiology
374(6)
Hearing
374(4)
Sensorineural hearing loss
378(2)
Speech processing
380(1)
Clinical need
381(2)
Historic devices
383(3)
Early implantable devices
383(2)
Enabling technology: continuous interleaved sampling speech processing strategy
385(1)
System description and diagram
386(5)
Processor
386(2)
Implant
388(1)
Electrode array
389(1)
Programmer
390(1)
Improvements in sound recognition
391(1)
Key features from engineering standards
391(2)
Output amplitude
391(1)
Protection from harm caused by magnetically-induced force
392(1)
Effect of tensile forces
392(1)
Effect of direct impact
393(1)
Effect of atmospheric pressure
393(1)
Summary
393(1)
Exercises
394(1)
References
395(2)
Chapter 16 Functional electrical stimulators
397(26)
Spinal nerves
398(4)
Neuromuscular junction
399(2)
Spinal cord injury
401(1)
Electrical stimulation
402(3)
Neural interface systems
405(3)
Clinical need
408(1)
Historic devices
409(5)
Early devices
409(1)
Freehand neurostimulator
410(2)
BrainGate system
412(2)
Emerging technologies
414(4)
Functional electrical stimulation and intracortical brain-computer interface
414(3)
FES + iBCI issues
417(1)
Robotic exoskeleton
417(1)
Key features from engineering standards
418(1)
Summary
418(1)
Exercises
419(1)
References
420(3)
Chapter 17 Intraocular lens implants
423(28)
Ocular physiology
424(4)
Vision
424(4)
Cataracts
428(1)
Ultrasound
428(6)
A-scan biometry
428(4)
Emulsification
432(2)
Clinical need
434(1)
Historic devices
435(3)
Early devices
435(1)
Enabling technology: poly(methyl methacrylate) lens
436(1)
Enabling technology: phacoemulsification
437(1)
System description and diagram
438(5)
Intraocular lens designs
438(2)
Intraocular lens complications
440(2)
Other intraocular lenses
442(1)
Key features from engineering standards
443(4)
Dynamic fatigue durability
443(1)
Recovery of properties following simulated surgical manipulation
444(1)
Hydrolytic stability
445(1)
Effect of Nd-YAG laser exposure
445(1)
Clinical study
445(2)
Summary
447(1)
Exercises
448(1)
References
449(2)
Chapter 18 Total hip prostheses
451(32)
Hip physiology
452(6)
Bone
452(3)
Articular cartilage and synovial joint capsule
455(1)
Contact forces
455(3)
Biotribology
458(2)
Wear-mediated osteolysis
459(1)
Clinical need
460(1)
Historic devices
461(2)
Early devices
461(1)
Enabling technologies: low friction and PMMA cement
461(2)
System descriptions and diagrams
463(6)
Bearings and wear
463(5)
Hip resurfacing
468(1)
Key features from engineering standards
469(7)
Femoral component fatigue without torsion
471(1)
Femoral component fatigue with torsion
472(1)
Femoral component corrosion
473(1)
Wear: test apparatus
473(1)
Wear: test measurements
473(3)
FDA regulation
476(1)
Summary
477(1)
Exercises
478(1)
References
479(4)
Chapter 19 Drug-eluting stents
483(20)
Combination products
484(1)
Drug delivery using coatings
485(4)
Clinical need
489(1)
Engineering design
490(2)
Drug-eluting stent requirements
492(1)
System descriptions and diagrams
492(6)
First generation
493(1)
Second generation
493(3)
Third generation
496(2)
Key features from engineering standards
498(1)
Pre-clinical in vitro evaluation of the device part-related attributes
498(1)
Summary
498(1)
Exercises
499(1)
References
500(3)
Chapter 20 Artificial pancreas
503(38)
Blood glucose regulation
504(4)
Pancreatic hormones
505(1)
Hormonal control
506(1)
Diabetes mellitus
507(1)
Compartmental models
508(7)
Model identifiability
508(2)
Minimal model of insulin sensitivity
510(3)
Plasma interstitial glucose equilibration model
513(2)
Clinical need
515(1)
Historic devices
516(3)
Ideal artificial pancreas system
516(1)
Early devices
517(2)
Artificial pancreas requirements
519(5)
Sensor performance
520(3)
Closed-loop control
523(1)
System description and diagram
524(4)
Key features from engineering standards
528(3)
Sensor point accuracy
528(1)
Sensor trend accuracy
528(1)
Sensor threshold alarm accuracy
529(1)
Sensor stability
530(1)
Summary
531(1)
Exercises
532(2)
References
534(7)
PART 2 LAB EXPERIMENTS
Chapter 21 ECG electrode verification testing lab
541(4)
Strategic planning
541(1)
Materials and methods
542(2)
Procedure
543(1)
Results and analysis
544(1)
Discussion
544(1)
References
544(1)
Chapter 22 Electrocardiograph design lab
545(4)
Strategic planning
545(1)
Materials and methods
546(1)
Procedure
547(1)
Results and analysis
547(1)
Discussion
548(1)
References
548(1)
Chapter 23 Electrocardiograph filtering lab
549(6)
Strategic planning
550(1)
Introduction to wavelet filters
550(2)
Materials and methods
552(1)
Procedure
552(1)
Results and analysis
553(1)
Discussion
554(1)
References
554(1)
Chapter 24 Pacemaker programming lab
555(6)
Strategic planning
555(1)
Materials and methods
555(4)
Patient 1
557(1)
Patient 2
558(1)
Patient 3
558(1)
Results and analysis
559(1)
Discussion
559(2)
Chapter 25 Echocardiography lab
561(8)
Strategic planning
561(1)
Materials and methods
562(6)
Background
562(3)
Measurements
565(1)
Procedure
566(2)
Results and analysis
568(1)
Discussion
568(1)
References
568(1)
Chapter 26 Patient monitoring lab
569(6)
Strategic planning
569(1)
Patient monitoring
570(1)
Motion artifact and false alarms
570(1)
Materials and methods
571(2)
Procedure
571(2)
Results and analysis
573(1)
Discussion
573(1)
References
573(2)
Chapter 27 Thermometry accuracy lab
575(4)
Strategic planning
575(1)
Materials and methods
576(2)
Procedure
577(1)
Results and analysis
578(1)
Discussion
578(1)
References
578(1)
Chapter 28 Energy balance lab
579(10)
Strategic planning
579(1)
Personal comfort in a building
580(5)
Radiant cloud convection
581(1)
Radiant cloud radiation
582(1)
Radiation calculated from energy balance of the entire system
583(2)
Materials and methods
585(2)
Procedure
585(1)
Radiant cloud efficiency
586(1)
Results and analysis
587(1)
Discussion
587(1)
Reference
587(2)
Chapter 29 Surface characterization lab
589(6)
Strategic planning
589(1)
Medical device coatings
590(1)
Surface modification
590(1)
Materials and methods
591(2)
Procedure
591(2)
Results and analysis
593(1)
Discussion
593(1)
References
593(2)
Chapter 30 Entrepreneurship lab
595(6)
Strategic planning
595(1)
Required readings
596(1)
Crossing the Chasm background
596(2)
Materials and methods
598(1)
Report structure and grading
598(1)
Crossing the Chasm discussion lecture
599(1)
References
599(2)
Chapter 31 Engineering ethics lab
601(6)
Strategic planning
601(1)
Required readings
602(1)
Engineering ethics background
602(1)
Materials and methods
603(3)
Assignment structure and grading
605(1)
References
606(1)
Index 607
Dr. Baura received her BS Electrical Engineering degree from Loyola Marymount University, her MS Electrical Engineering and MS Biomedical Engineering degrees from Drexel University, and her PhD Bioengineering degree from the University of Washington. Between her graduate degrees, she worked as a loop transmission systems engineer at AT&T Bell Laboratories. She then spent 13 years in the medical device industry conducting medical device research and managing research and product development at several companies. She holds 20 U.S. patents. In her last industry position, Dr. Baura was Vice President, Research and Chief Scientist at CardioDynamics. In 2006, she returned to academia as a Professor of Medical Devices at Keck Graduate Institute of Applied Life Sciences, which is one of the Claremont Colleges.Throughout her career, Dr. Baura has championed engineering curriculum excellence. She has written four engineering textbooks, three of which are medical device textbooks. She is an ABET Engineering Accreditation Commissioner. In her new position as Director of Engineering Science at Loyola, she is constructing a general engineering curriculum that incorporates substantial industry input and prepares new engineering graduates for positions in the medical device, semiconductor, and wastewater treatment industries.