Muutke küpsiste eelistusi

E-raamat: Medical Instrument Design and Development: From Requirements to Market Placements

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-May-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118652466
  • Formaat - EPUB+DRM
  • Hind: 124,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-May-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118652466

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Becchetti and Neri present a textbook for a graduate or advanced undergraduate engineering course on how medical devices and instruments are designed from conception to market placement. It could also prove useful to practicing engineers. They emphasize the system-wide technical design approach that encompasses the basic theory, the associated implementation techniques, and the application of regulations and standards. A detailed case study traces the development of an electrocardiograph system that is now on the European market. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

This book explains all of the stages involved in developing medical devices; from concept to medical approval including system engineering, bioinstrumentation design, signal processing, electronics, software and ICT with Cloud and e-Health development.

Medical Instrument Design and Development offers a comprehensive theoretical background with extensive use of diagrams, graphics and tables (around 400 throughout the book). The book explains how the theory is translated into industrial medical products using a market-sold Electrocardiograph disclosed in its design by the Gamma Cardio Soft manufacturer.

The sequence of the chapters reflects the product development lifecycle. Each chapter is focused on a specific University course and is divided into two sections: theory and implementation. The theory sections explain the main concepts and principles which remain valid across technological evolutions of medical instrumentation. The Implementation sections show how the theory is translated into a medical product. The Electrocardiograph (ECG or EKG) is used as an example as it is a suitable device to explore to fully understand medical instrumentation since it is sufficiently simple but encompasses all the main areas involved in developing medical electronic equipment.

Key Features:

  • Introduces a system-level approach to product design
  • Covers topics such as bioinstrumentation, signal processing, information theory, electronics, software, firmware, telemedicine, e-Health and medical device certification
  • Explains how to use theory to implement a market product (using ECG as an example)
  • Examines the design and applications of main medical instruments
  • Details the additional know-how required for product implementation: business context, system design, project management, intellectual property rights, product life cycle, etc.
  • Includes an accompanying website with the design of the certified ECG product (www.gammacardiosoft.it/book)
  • Discloses the details of a marketed ECG Product (from Gamma Cardio Soft) compliant with the ANSI standard AAMI EC 11 under open licenses (GNU GPL, Creative Common)

This book is written for biomedical engineering courses (upper-level undergraduate and graduate students) and for engineers interested in medical instrumentation/device design with a comprehensive and interdisciplinary system perspective.

Foreword xv
Preface xvii
Acknowledgment xxi
1 System Engineering
1(58)
Chapter Organization
1(3)
Part I Theory
4(1)
1.1 Introduction
4(1)
1.2 Problem Formulation in Product Design
4(2)
1.3 The Business Context for Design
6(4)
1.4 The Engineering Product Design Process
10(5)
1.5 System-subsystem Decomposition
15(6)
1.6 The Product Development Life Cycle
21(3)
1.7 Project Management in Product Design
24(6)
1.8 Intellectual Property Rights and Reuse
30(2)
Part II Implementation
32(1)
1.11 The ECG: Introduction
32(2)
1.11.1 The ECG's diagnostic relevance
32(1)
1.11.2 ECG Types
33(1)
1.12 The ECG Design Problem Formulation
34(2)
1.13 The ECG Business Plan
36(4)
1.13.1 Market Size and Trend
37(1)
1.13.2 Core and Distinctive Features
38(2)
1.14 The ECG Design Process
40(4)
1.14.1 Transverse Activities of the ECG Design Process
43(1)
1.14.2 Core Activities of the ECG Design Process
44(1)
1.15 ECG System-subsystem Decomposition
44(2)
1.15.1 Hardware Platform Decomposition
45(1)
1.15.2 Software Application Decomposition
45(1)
1.16 ECG Product Life Cycle
46(5)
1.16.1 Overcoming Risk of Inadequate Visualization of ECG Signal
47(3)
1.16.2 Overcoming Risk of Error Fixing in System Integration
50(1)
1.16.3 Overcoming Risks for Non-stable/Unfeasible Requirements
50(1)
1.17 The ECG Development Plan and Project Management
51(4)
1.18 IPR and Reuse Strategy for the ECG
55(4)
References
57(2)
2 Concepts And Requirements
59(78)
Chapter Organization
59(2)
Part I Theory
61(1)
2.1 Introduction
61(1)
2.2 The Medical Instrumentation Approach
62(5)
2.3 Extraction of Physiological Parameters
67(3)
2.4 Pressure and Flow
70(9)
2.4.1 Blood Pressure
72(2)
2.4.2 Blood Flow and Hemodynamics
74(5)
2.5 Biopotential Recording
79(2)
2.6 Electroencephalography
81(4)
2.7 Electromyography
85(3)
Part II Implementation
88(1)
2.8 Introduction
88(1)
2.9 Requirements Management
89(2)
2.10 Medical Instruments Requirements and Standards
91(3)
2.11 ECG Requirements
94(2)
2.12 The Patient Component
96(3)
2.12.1 The Heart's Pumping Function and the Circulatory System
96(1)
2.12.2 Heart Conduction `Control' System
97(2)
2.13 The ECG Method for Observation
99(9)
2.13.1 Recording the Heart's Electrical Signals
99(4)
2.13.2 ECG Definition and History
103(1)
2.13.3 ECG Standard Method of Observation
103(5)
2.14 Features of the Observations
108(11)
2.14.1 ECG Signal
108(2)
2.14.2 Clinically Significant Signal
110(7)
2.14.3 Power Line Noise
117(1)
2.14.4 Isoelectric Line Instability
118(1)
2.14.5 Muscle Artifacts
119(1)
2.15 Requirements Related to Measurements
119(7)
2.16 Safety Requirements
126(5)
2.16.1 EMC Performance
128(3)
2.17 Usability and Marketing Requirements
131(1)
2.18 Environment Issues
132(2)
2.19 Economic Requirements
134(3)
References
135(2)
3 Biomedical Engineering Design
137(44)
Chapter Organization
138(1)
Part I Theory
139(1)
3.1 Design Principles and Regulations
139(2)
3.2 General Design System Model
141(1)
3.3 Pressure and Flow Instruments
142(6)
3.3.1 Blood Pressure Instruments
144(2)
3.3.2 Flow Measurements
146(1)
3.3.3 Measuring Oxygen Concentration
147(1)
3.4 Biopotential Instruments
148(4)
3.4.1 Electroencephalographs
148(3)
3.4.2 Electromyographs
151(1)
3.5 The Design Process
152(8)
3.5.1 The Conceptual Design
155(1)
3.5.2 System-wide Design Decisions
156(1)
3.5.3 System Architectural Design
157(1)
3.5.4 Risk Management
157(3)
Part II Implementation
160(1)
3.6 ECG-wide Decisions
160(10)
3.6.1 The Gamma Cardio CG Use Case
160(1)
3.6.2 Human Factors and the User Interface Design
161(6)
3.6.3 Patient Interface: the Biopotential Electrodes
167(3)
3.7 The ECG System Architectural Design
170(9)
3.7.1 Subsystem Identification
170(1)
3.7.2 The Communication Interfaces
171(3)
3.7.3 Acquisition Hardware Requirements
174(2)
3.7.4 Firmware Requirements
176(1)
3.7.5 Software Application Requirements
177(1)
3.7.6 Concept of Execution among Subsystems
178(1)
3.8 Gamma Cardio CG Technical File Structure
179(2)
References
180(1)
4 Signal Processing And Estimation
181(50)
Chapter Organization
181(3)
Part I Theory
184(1)
4.1 Discrete Representations of Analog Systems
184(5)
4.2 Discrete Fourier Transform
189(8)
4.2.1 Discrete Fourier Transform Statistics
194(3)
4.3 Estimation Theory Framework
197(7)
4.3.1 Minimum Mean Square Error Estimate
199(2)
4.3.2 Minimum Mean Absolute Error Estimate (MMAE)
201(1)
4.3.3 Maximum A Posteriori (MAP) Probability Estimate
202(1)
4.3.4 Maximum Likelihood Estimation (MLE)
203(1)
4.4 Performance Indicators
204(10)
4.4.1 Efficient Estimators
208(1)
4.4.2 Fisher's Information Matrix
209(3)
4.4.3 Akaike Information Criterion
212(2)
Part II Implementation
214(1)
4.5 Analog to Digital Conversion
214(7)
4.5.1 Indirect Sampling versus Direct Sampling
214(2)
4.5.2 Quantizer Design
216(5)
4.6 Signal Denoising
221(3)
4.6.1 White Gaussian Signals in Additive White Gaussian Noise
221(1)
4.6.2 Denoising of Gaussian Cyclostationary Signals
222(1)
4.6.3 MMSE Digital Filter
222(2)
4.7 Time of Arrival Estimation
224(7)
References
229(2)
5 Applied Electronics
231(128)
Chapter Organization
231(2)
Part I Theory
233(2)
5.0 Architectural Design
235(1)
5.1 Sensors
236(7)
5.2 Circuit Protection Function
243(11)
5.2.1 Johnson Noise
246(1)
5.2.2 Transient Voltage Suppressors
247(1)
5.2.3 RF Filter Circuit Protection
248(3)
5.2.4 Circuit Frequency Response
251(3)
5.3 Buffer Stage
254(4)
5.3.1 Operational Amplifiers
256(2)
5.4 Analog Signal Processing
258(4)
5.4.1 Summing Amplifier Circuit
259(1)
5.4.2 Analog Signal Switching
260(2)
5.5 Interference and Instrumentation Amplifiers
262(11)
5.5.1 Eliminating In-band Interference
262(5)
5.5.2 Patient Model
267(1)
5.5.3 The ECG Model
268(2)
5.5.4 Right Leg Connection
270(2)
5.5.5 Right Leg Driver Circuit
272(1)
5.6 Analog Filtering
273(6)
5.6.1 Frequency Domain
273(5)
5.6.2 Analog versus Digital Filtering
278(1)
5.7 ADC Conversion
279(6)
5.8 Programable Devices
285(4)
5.9 Power Module
289(12)
5.9.1 Power Sources
290(4)
5.9.2 Electrical Safety and Appliance Design
294(4)
5.9.3 Power Module Design
298(3)
5.10 Baseband Digital Communication
301(12)
5.10.1 Data Transmission Elements
302(11)
Part II Implementation
313(1)
5.20 Gamma Cardio CG Architecture
313(4)
5.20.1 ECG Design Choices
314(3)
5.20.2 Gamma Cardio CG Complete Scheme
317(1)
5.21 ECG Sensors
317(4)
5.22 Gamma Cardio CG Protection
321(4)
5.23 Gamma Cardio CG Buffer Stage
325(2)
5.24 The Lead Selector
327(5)
5.24.1 Calibration
331(1)
5.25 ECG Amplification
332(7)
5.25.1 ECG Circuits
333(4)
5.25.2 Input Dynamic Range: Requirement Demonstrations
337(1)
5.25.3 Gain Error: Requirement Demonstrations
338(1)
5.26 Analog Filtering
339(3)
5.27 The ADC Circuit
342(4)
5.28 Programable Devices
346(5)
5.28.1 Circuit Design
347(1)
5.28.2 The Clock
348(3)
5.29 Power Module
351(2)
5.29.1 Power Module Circuit
353(1)
5.30 Communication Module
353(6)
Conclusion
357(1)
References
358(1)
6 Medical Software
359(60)
Chapter Organization
359(2)
Part I Theory
361(1)
6.1 Introduction
361(4)
6.1.1 Intrinsic Risks and Software Engineering
362(1)
6.1.2 Main Concepts in Software Development
363(1)
6.1.3 Regulatory Requirements for Software
364(1)
6.2 The Process: a Standard for Medical Software
365(9)
6.2.1 IEC/EN 62304 Overview
365(3)
6.2.2 Risk Analysis for Hardware and Software Design
368(2)
6.2.3 Software Safety Classification
370(1)
6.2.4 System Decomposition and Risks
371(1)
6.2.5 Impact of Safety Classification
372(1)
6.2.6 Soup
372(2)
6.3 Risk Management Process
374(5)
6.3.1 Risk Management in Software
376(1)
6.3.2 Risk Management for Medical Instrument Software
377(2)
6.4 Software Development Process
379(10)
6.4.1 Software Development Planning
380(1)
6.4.2 Software Requirements Analysis
381(1)
6.4.3 Software Architectural Design
382(3)
6.4.4 Detailed Software Design
385(1)
6.4.5 Software Unit Implementation and Verification
385(2)
6.4.6 Software Integration and Integration Testing
387(1)
6.4.7 Software System Testing
388(1)
6.4.8 Software Release
388(1)
6.5 Software Configuration Management Process
389(2)
6.6 Software Problem Resolution Process
391(1)
6.7 Software Maintenance Process
392(1)
6.8 Guidelines on Software Design
393(7)
6.8.1 Definitions
395(1)
6.8.2 Basic Recommendations
396(1)
6.8.3 Software Core Services
396(2)
6.8.4 Defensive Programing
398(2)
Part II Implementation
400(1)
6.9 System Decomposition
400(2)
6.9.1 Gamma Cardio CG Use Case
400(1)
6.9.2 System Decomposition
401(1)
6.10 Risk Management
402(1)
6.11 Software Application
403(8)
6.11.1 Software Requirements
403(4)
6.11.2 Architectural Design
407(2)
6.11.3 Elaboration Module
409(2)
6.12 Firmware
411(8)
6.12.1 Firmware Requirements
411(2)
6.12.2 Architectural Design
413(3)
6.12.3 Automatic Test Capability
416(2)
References
418(1)
7 C-Health
419(48)
Chapter Organization
420(1)
Part I Theory
421(1)
7.1 Introduction
421(5)
7.1.1 The Assessment Framework
421(1)
7.1.2 Assessment Framework for the Health Sector
422(4)
7.2 The Cloud Computing Model
426(9)
7.2.1 Basics of Cloud Computing
426(2)
7.2.2 Cloud Platforms
428(2)
7.2.3 Services in the Cloud
430(2)
7.2.4 The Cloud Shape
432(2)
7.2.5 Features of the Clouds
434(1)
7.3 e-Health
435(7)
7.3.1 Interoperability in e-Health
437(5)
7.4 Electronic Health Record (EHR)
442(3)
7.5 c-Health
445(5)
Part II Implementation
449(1)
7.6 Telecardiology
450(1)
7.6.1 Application Scenario
450(1)
7.7 Telecardiology Technology
451(4)
7.8 Workflow in Telecardiology
455(8)
7.8.1 Basic Workflows
455(2)
7.8.2 Alternative Workflows
457(3)
7.8.3 Where and When Telecardiology Can Be Used
460(3)
7.9 Risks of Telecardiology
463(4)
References
465(2)
8 Certification Process
467(92)
Chapter Organization
467(2)
Part I Theory
469(1)
8.1 Certification Objectives and Processes
469(5)
8.1.1 Certification, Standards and Definitions
470(4)
8.2 Regulations, Standards and Organizations
474(6)
8.2.1 Technical Standards for Medical Devices
477(1)
8.2.2 European Context
478(2)
8.3 Basic Protection Concepts
480(6)
8.3.1 Protection Against Electric Shock
480(4)
8.3.2 Insulation
484(1)
8.3.3 Degree of Protection Provided by Enclosures
485(1)
8.4 Verification of Constructional Requirements
486(9)
8.4.1 Choice of Safety Critical Materials and Components
486(3)
8.4.2 Creepage Distances and Air Clearances
489(1)
8.4.3 Markings
490(2)
8.4.4 Conductors
492(2)
8.4.5 Connections to the Power Supply
494(1)
8.4.6 Fire Enclosure
495(1)
8.5 Medical Equipment Safety Tests
495(9)
8.5.1 Leakage Current
497(2)
8.5.2 Heating
499(1)
8.5.3 Dielectric Strength
500(1)
8.5.4 Stability and Mechanical Strength
500(1)
8.5.5 Abnormal Operating and Fault Conditions
501(1)
8.5.6 Continuity of Protective Earthing
502(1)
8.5.7 Residual Voltage
503(1)
8.5.8 Voltage on the Accessible Parts
503(1)
8.5.9 Energy Stored - Pressurized Part
503(1)
8.5.10 Current and Power Consumption
504(1)
8.6 Electromagnetic Compatibility
504(11)
8.6.1 Emissions
506(5)
8.6.2 Immunity
511(2)
8.6.3 The Test Report
513(2)
Part II Implementation
515(1)
8.11 The Process
515(22)
8.11.1 Device Description
516(1)
8.11.2 Medical Device Classes
516(3)
8.11.3 EU Conformity Assessment
519(1)
8.11.4 Risk Management Deliverable
520(7)
8.11.5 The Technical File
527(10)
8.12 Regulatory Approaches to Medical Device Market Placement
537(3)
8.13 Basic Concepts in Device Implementation
540(4)
8.13.1 Protection Against Electric Shock
541(1)
8.13.2 Insulation
541(3)
8.13.3 Enclosure IP Protection
544(1)
8.14 Verification on Design Performance
544(2)
8.14.1 Safety-critical Materials
544(1)
8.14.2 Creepage and Air Clearance
545(1)
8.14.3 Other Verifications
545(1)
8.15 Safety Tests
546(2)
8.15.1 Leakage Current
546(1)
8.15.2 Heating
546(1)
8.15.3 Other Safety Tests
547(1)
8.16 Electromagnetic Compatibility
548(11)
8.16.1 Emission
549(1)
8.16.2 Immunity
550(4)
References
554(1)
Summary of Regulations and Standards
555(4)
Index 559
Dr. Claudio Becchetti, RadioLabs, Italy Claudio Becchetti graduated with honors in Electronic Engineering in 1994 at the University of Rome, where he achieved the Ph.D. in Telecommunications in 1999. From 2002 to 2009, he was adjoint professor at the University "La Sapienza", faculty of Telecommunication Engineering where he held first a course on Industrial design and then a course on Signal Theory.  Claudio has 7 years teaching experience working with students studying ECG. This device is well suited as a practical example for signal theory, digital signal processing, electronics and software engineering.

Professor Alessandro Neri, University of Roma TRE, Italy Alessandro Neri he received the Doctoral Degree cum laude in Electronic Engineering from the University of Rome "La Sapienza" in 1977. Since 1992 he is responsible for coordination and management of research and teaching activities in the Telecommunication fields at the University of Roma TRE, currently leading the Digital Signal Processing, Multimedia & Optical Communications at the Applied Electronics Department. His research activity has mainly been focused on information theory, signal theory, and signal and image processing and their applications to both telecommunications systems and remote sensing.