ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
Medical Optical Imaging and Virtual Microscopy Image Analysis: A Deployable Microscopic Image Segmentation Look-Up Table Based on A Dilated CNN.- From Feature Maps to Few-Shot Cell Segmentation.- Deep Learning for Classifying Anti-Shigella Opsono-phagocytosis-promoting Monoclonal Antibodies.- Multi-target Stain Normalization for Histology Slides.- Intensity Inhomogeneity Correction for Large Panoramic Electron Microscopy Images.- Fully Automated CTC Detection, Segmentation and Classification for Multi-Channel IF Imaging.- Lymphoid Infiltration Assessment of the Tumor Margins in H&E Slides.- TRP-Net: Transformer with RMM and PPM for High-efficiency Circulating Abnormal Cells Detection in Multichannel Fluorescence Imaging.- Color Flow Imaging Microscopy Improves Identification of Stress Sources of Protein Aggregates in Biopharmaceuticals.- Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution.- CLSMI2T3: 3D CLSM Vasculature Volume Reconstruction from A Single 2D Slice by Off-Focal Plane Signal Using Synthetic Data.- Retinal IPA: Iterative KeyPoints Alignment for Multimodal Retinal Imaging.- MDSN: Multi-stage Context-Aware Nuclei Detection-Segmentation Network.- Structured Model Pruning for Efficient Inference in Computational Pathology.- Histopathology Image Embedding based on Foundation Models Features Aggregation for DLBCL Patient Treatment Response Prediction.- EM-Compressor: Electron Microscopy Image Compression in Connectomics with Variational Autoencoders. Kidney Pathology Image segmentation (KPIs) Challenge: AC-UNet: A Self-Adaptive Cropping Approach for Kidney Pathology Image Segmentation.- SAM-Glomeruli: Enhanced Segment Anything Model for Precise Glomeruli Segmentation.- A Robust Deep Learning Method for WSI-level Diseased Glomeruli Segmentation.- Ensembled SegNeXt Based Glomeruli Segmentation.- Glomeruli Segmentation in Whole-Slide Images: Is Better Local Performance Always Better.