Muutke küpsiste eelistusi

E-raamat: MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering

(Department of Mechanical and Aerospace Engineering, San Jose State University)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Jul-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119771166
  • Formaat - PDF+DRM
  • Hind: 164,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Jul-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119771166

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text for professionals and advanced engineering students covers the electrical and mechanical aspects of microelectromechanical systems. Following a brief introduction to the history and evolution of nanotechnology, the book covers fundamentals in the engineering design of nanostructures, including fabrication techniques for producing nano-products, engineering design principles in molecular dynamics, and fluid flows and heat transmission in nanoscale substances. This second edition reflects changes in the science and technology of miniaturization over the last five years since the first edition was published. It contains a new section on nanoscale engineering, plus expanded material on microfabrication, assembly and packaging technologies, and use of the popular SU-8 polymer material. Examples, case studies, and applied problems are included. Hsu is professor in the Department of Mechanical and Aerospace Engineering at San Jose State University. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)

Technology/Engineering/Mechanical

A bestselling MEMS text...now better than ever.

An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology. In the five years since the publication of the first edition, there have been significant changes in the science and technology of miniaturization, including microsystems technology and nanotechnology. In response to the increasing needs of engineers to acquire basic knowledge and experience in these areas, this popular text has been carefully updated, including an entirely new section on the introduction of nanoscale engineering.

Following a brief introduction to the history and evolution of nanotechnology, the author covers the fundamentals in the engineering design of nanostructures, including fabrication techniques for producing nanoproducts, engineering design principles in molecular dynamics, and fluid flows and heat transmission in nanoscale substances.

Other highlights of the Second Edition include:
*

Expanded coverage of microfabrication plus assembly and packaging technologies
*

The introduction of microgyroscopes, miniature microphones, and heat pipes
*

Design methodologies for thermally actuated multilayered device components
*

The use of popular SU-8 polymer material

Supported by numerous examples, case studies, and applied problems to facilitate understanding and real-world application, the Second Edition will be of significant value for both professionals and senior-level mechanical or electrical engineering students.
Preface xvii
Preface to the First Edition xix
Suggestions to Instructors xxiii
Overview of MEMS and Microsystems
1(34)
MEMS and Microsystems
1(6)
Typical MEMS and Microsystems Products
7(3)
Microgears
7(1)
Micromotors
7(1)
Microturbines
7(1)
Micro-Optical Components
7(3)
Evolution of Microfabrication
10(1)
Microsystems and Microelectronics
11(2)
Multidisciplinary Nature of Microsystems Design and Manufacture
13(2)
Microsystems and Miniaturization
15(6)
Application of Microsystems in Automotive Industry
21(6)
Safety
22(2)
Engine and Power Trains
24(1)
Comfort and Convenience
24(1)
Vehicle Diagnostics and Health Monitoring
24(2)
Future Automotive Applications
26(1)
Application of Microsystems in Other Industries
27(3)
Application in Health Care Industry
27(1)
Application in Aerospace Industry
28(1)
Application in Industrial Products
29(1)
Application in Consumer Products
29(1)
Application in Telecommunications
30(1)
Markets for Microsystems
30(5)
Problems
32(3)
Working Principles of Microsystems
35(48)
Introduction
35(1)
Microsensors
35(18)
Acoustic Wave Sensors
36(1)
Biomedical and Biosensors
37(3)
Chemical Sensors
40(2)
Optical Sensors
42(2)
Pressure Sensors
44(6)
Thermal Sensors
50(3)
Microactuation
53(6)
Actuation Using Thermal Forces
53(1)
Actuation Using Shape Memory Alloys
54(1)
Actuation Using Piezoelectric Effect
54(1)
Actuation Using Electrostatic Forces
55(4)
MEMS with Microactuators
59(7)
Microgrippers
59(2)
Miniature Microphones
61(3)
Micromotors
64(2)
Microactuators with Mechanical Inertia
66(6)
Microaccelerometers
66(4)
Microgyroscopes
70(2)
Microfluidics
72(11)
Microvalves
74(1)
Micropumps
75(1)
Micro-Heat Pipes
75(2)
Problems
77(6)
Engineering Science for Microsystems Design and Fabrication
83(26)
Introduction
83(1)
Atomic Structure of Matter
83(3)
Ions and Ionization
86(1)
Molecular Theory of Matter and Intermolecular Forces
87(2)
Doping of Semiconductors
89(3)
Diffusion Process
92(7)
Plasma Physics
99(1)
Electrochemistry
100(9)
Electrolysis
101(1)
Electrohydrodynamics
102(3)
Problems
105(4)
Engineering Mechanics for Microsystems Design
109(74)
Introduction
109(1)
Static Bending of Thin Plates
110(9)
Bending of Circular Plates with Edge Fixed
112(2)
Bending of Rectangular Plates with All Edges Fixed
114(2)
Bending of Square Plates with Edges Fixed
116(3)
Mechanical Vibration
119(31)
General Formulation
119(4)
Resonant Vibration
123(2)
Microaccelerometers
125(1)
Design Theory of Accelerometers
126(8)
Damping Coefficients
134(10)
Resonant Microsensors
144(6)
Thermomechanics
150(15)
Thermal Effects on Mechanical Strength of Materials
150(1)
Creep Deformation
150(2)
Thermal Stresses
152(13)
Fracture Mechanics
165(7)
Stress Intensity Factors
166(1)
Fracture Toughness
167(2)
Interfacial Fracture Mechanics
169(3)
Thin-Film Mechanics
172(1)
Overview of Finite Element Stress Analysis
173(10)
The Principle
173(2)
Engineering Applications
175(1)
Input Information to FEA
175(1)
Output from FEA
175(1)
Graphical Output
176(1)
General Remarks
176(2)
Problems
178(5)
Thermofluid Engineering and Microsystems Design
183(44)
Introduction
183(1)
Overview of Basics of Fluid Mechanics at Macro- and Mesoscales
184(3)
Viscosity of Fluids
184(2)
Streamlines and Stream Tubes
186(1)
Control Volumes and Control Surfaces
187(1)
Flow Patterns and Reynolds Number
187(1)
Basic Equations in Continuum Fluid Dynamics
187(8)
Continuity Equation
187(3)
Momentum Equation
190(2)
Equation of Motion
192(3)
Laminar Fluid Flow in Circular Conduits
195(3)
Computational Fluid Dynamics
198(1)
Incompressible Fluid Flow in Microconduits
199(5)
Surface Tension
199(2)
Capillary Effect
201(2)
Micropumping
203(1)
Overview of Heat Conduction in Solids
204(11)
General Principle of Heat Conduction
204(1)
Fourier Law of Heat Conduction
205(2)
Heat Conduction Equation
207(1)
Newton's Cooling Law
208(1)
Solid-Fluid Interaction
209(1)
Boundary Conditions
210(5)
Heat Conduction in Multilayered Thin Films
215(5)
Heat Conduction in Solids at Submicrometer Scale
220(7)
Problems
221(6)
Scaling Laws in Miniaturization
227(18)
Introduction to Scaling
227(1)
Scaling in Geometry
228(2)
Scaling in Rigid-Body Dynamics
230(3)
Scaling in Dynamic Forces
230(1)
Trimmer Force Scaling Vector
231(2)
Scaling in Electrostatic Forces
233(2)
Scaling of Electromagnetic Forces
235(2)
Scaling in Electricity
237(1)
Scaling in Fluid Mechanics
238(4)
Scaling in Heat Transfer
242(3)
Scaling in Heat Conduction
242(1)
Scaling in Heat Convection
243(1)
Problems
244(1)
Materials for MEMS and Microsystems
245(40)
Introduction
245(1)
Substrates and Wafers
245(2)
Active Substrate Materials
247(1)
Silicon as Substrate Material
247(11)
Ideal Substrate for MEMS
247(1)
Single-Crystal Silicon and Wafers
248(2)
Crystal Structure
250(3)
Miller Indices
253(3)
Mechanical Properties of Silicon
256(2)
Silicon Compounds
258(3)
Silicon Dioxide
258(1)
Silicon Carbide
259(1)
Silicon Nitride
259(1)
Polycrystalline Silicon
260(1)
Silicon Piezoresistors
261(5)
Gallium Arsenide
266(1)
Quartz
267(1)
Piezoelectric Crystals
268(6)
Polymers
274(6)
Polymers as Industrial Materials
274(1)
Polymers for MEMS and Microsystems
275(1)
Conductive Polymers
275(2)
Langmuir-Blodgett Film
277(1)
SU-8 Photoresists
278(2)
Packaging Materials
280(5)
Problems
281(4)
Microsystems Fabrication Processes
285(38)
Introduction
285(1)
Photolithography
285(4)
Overview
286(1)
Photoresists and Application
286(2)
Light Sources
288(1)
Photoresist Development
289(1)
Photoresist Removal and Postbaking
289(1)
Ion Implantation
289(3)
Diffusion
292(3)
Oxidation
295(6)
Thermal Oxidation
295(1)
Silicon Dioxide
296(1)
Thermal Oxidation Rates
296(4)
Oxide Thickness by Color
300(1)
Chemical Vapor Deposition
301(11)
Working Principle of CVD
301(1)
Chemical Reactions in CVD
302(1)
Rate of Deposition
303(7)
Enhanced CVD
310(2)
Physical Vapor Deposition: Sputtering
312(1)
Deposition by Epitaxy
313(2)
Etching
315(2)
Chemical Etching
316(1)
Plasma Etching
317(1)
Summary of Microfabrication
317(6)
Problems
318(5)
Overview of Micromanufacturing
323(26)
Introduction
323(1)
Bulk Micromanufacturing
324(9)
Overview of Etching
324(1)
Isotropic and Anisotropic Etching
325(1)
Wet Etchants
326(2)
Etch Stop
328(1)
Dry Etching
329(4)
Comparison of Wet versus Dry Etching
333(1)
Surface Micromachining
333(5)
Description
333(2)
Process
335(1)
Mechanical Problems Associated with Surface Micromachining
336(2)
LIGA Process
338(5)
Description
339(1)
Materials for Substrates and Photoresists
340(1)
Electroplating
341(1)
SLIGA Process
342(1)
Summary of Micromanufacturing
343(6)
Bulk Micromanufacturing
343(1)
Surface Micromachining
343(1)
LIGA Process
343(1)
Problems
344(5)
Microsystems Design
349(58)
Introduction
349(1)
Design Considerations
350(8)
Design Constraints
351(1)
Selection of Materials
352(2)
Selection of Manufacturing Processes
354(1)
Selection of Signal Transduction
355(3)
Electromechanical System
358(1)
Packaging
358(1)
Process Design
358(4)
Photolithography
359(1)
Thin-Film Fabrications
360(2)
Geometry Shaping
362(1)
Mechanical Design
362(7)
Geometry of MEMS Components
362(1)
Thermomechanical Loading
362(1)
Thermomechanical Stress Analysis
363(1)
Dynamic Analysis
364(5)
Interfacial Fracture Analysis
369(1)
Mechanical Design Using Finite Element Method
369(9)
Finite Element Formulation
370(5)
Simulation of Microfabrication Processes
375(3)
Design of Silicon Die of a Micropressure Sensor
378(4)
Design of Microfluidic Network Systems
382(13)
Fluid Resistance in Microchannels
383(3)
Capillary Electrophoresis Network Systems
386(2)
Mathematical Modeling of Capillary Electrophoresis Network Systems
388(1)
Design Case: Capillary Electrophoresis Network System
389(3)
Capillary Electrophoresis in Curved Channels
392(2)
Issues in Design of CE Processes
394(1)
Computer-Aided Design
395(12)
Why CAD?
395(1)
What Is in a CAD Package for Microsystems?
395(3)
How to Choose a CAD Package
398(1)
Design Case Using CAD
398(4)
Problems
402(5)
Assembly, Packaging, and Testing of Microsystems
407(58)
Introduction
407(2)
Overview of Microassembly
409(1)
High Costs of Microassembly
410(1)
Microassembly Processes
411(2)
Major Technical Problems in Microassembly
413(6)
Tolerances in Microassembly
414(3)
Tools and Fixtures
417(1)
Contact Problems in Microassembly Tools
417(2)
Microassembly Work Cells
419(2)
Challenging Issues in Microassembly
421(1)
Overview of Microsystems Packaging
422(2)
General Considerations in Packaging Design
424(1)
Three Levels of Microsystems Packaging
424(3)
Die-Level Packaging
424(1)
Device-Level Packaging
425(2)
System-Level Packaging
427(1)
Interfaces in Microsystems Packaging
427(1)
Essential Packaging Technologies
428(1)
Die Preparation
429(1)
Surface Bonding
429(8)
Adhesives
430(1)
Eutectic Bonding
431(1)
Anodic Bonding
432(2)
Silicon Fusion Bonding
434(1)
Overview of Surface Bonding Techniques
434(1)
Silicon-on-Insulator: Special Surface Bonding Techniques
435(2)
Wire Bonding
437(2)
Sealing and Encapsulation
439(4)
Integrated Encapsulation Processes
440(1)
Sealing by Wafer Bonding
441(1)
Vacuum Sealing and Encapsulation
442(1)
Three-Dimensional Packaging
443(1)
Selection of Packaging Materials
444(3)
Signal Mapping and Transduction
447(4)
Typical Electrical Signals in Microsystems
447(1)
Measurement of Resistance
447(1)
Signal Mapping and Transduction in Pressure Sensors
448(2)
Capacitance Measurements
450(1)
Design Case on Pressure Sensor Packaging
451(4)
Reliability in MEMS Packaging
455(1)
Testing for Reliability
456(9)
Problems
458(7)
Introduction to Nanoscale Engineering
465(44)
Introduction
465(2)
Micro- and Nanoscale Technologies
467(1)
General Principle of Nanofabrication
468(3)
Nanoproducts
471(3)
Application of Nanoproducts
474(4)
Quantum Physics
478(1)
Molecular Dynamics
479(3)
Fluid Flow in Submicrometer- and Nanoscales
482(4)
Rarefied Gas
482(1)
Knudsen and Mach Numbers
482(1)
Modeling of Micro- and Nanoscale Gas Flow
483(3)
Heat Conduction at Nanoscale
486(5)
Heat Transmission at Submicrometer- and Nanoscale
486(3)
Thermal Conductivity of Thin Films
489(1)
Heat Conduction Equation for Thin Films
490(1)
Measurement of Thermal Conductivity
491(6)
Challenges in Nanoscale Engineering
497(5)
Nanopatterning in Nanofabrication
498(2)
Nanoassembly
500(1)
New Materials for Nanoelectromechanical Systems (NEMS)
500(1)
Analytical Modeling
501(1)
Testing
502(1)
Social Impacts of Nanoscale Engineering
502(7)
Problems
503(6)
References 509(14)
Appendix 1 Recommended Units for Thermophysical Quantities 523(2)
Appendix 2 Conversion of Units 525(2)
Index 527
Tai-Ran Hsu, PhD, is a Professor in the Department of Mechanical and Aerospace Engineering, San Jose State University, California. Dr. Hsu is the author of the earlier edition of this book, which is considered one of the bestselling textbooks on the subject of MEMS.