Muutke küpsiste eelistusi

E-raamat: Mercury Cadmium Telluride: Growth, Properties and Applications

Series edited by (University of Saskatchewan), Edited by (EPIR Technologies), Series edited by (University of Southampton), Edited by (SELEX Galileo Infrared Ltd)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 233,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The material is also known as Hg1-xCdxTe, or MCT, in the dominant material for infrared sensing and imaging. Physicists, materials scientists, and electronic and computer engineers review the current understanding on the material and its uses, for both newcomers and veterans. Their topics include the bulk growth of MCT, properties of Cd(Zn)Te relevant to use as substrates, the liquid-phase epitaxy, mechanical and thermal properties, band structure and related properties, extrinsic doping, photovoltaic infrared detectors, and electron avalanche photo-diodes. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration.

Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes:

  • Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth
  • Liquid phase epitaxy (LPE) growth
  • Metal-organic vapour phase epitaxy (MOVPE)
  • Molecular beam epitaxy (MBE)
  • Alternative substrates
  • Mechanical, thermal and optical properties of MCT
  • Defects, diffusion, doping and annealing
  • Dry device processing
  • Photoconductive and photovoltaic detectors
  • Avalanche photodiode detectors
  • Room-temperature IR detectors
Series Preface xxi
Preface xxiii
Foreword xxvii
List of Contributors xxxi
Part One Growth 1(150)
1 Bulk Growth of Mercury Cadmium Telluride (MCT)
3(18)
P. Capper
1.1 Introduction
3(1)
1.2 Phase equilibria
4(1)
1.3 Crystal growth
5(13)
1.3.1 Solid state recrystallization (SSR)
6(3)
1.3.2 Traveling heater method (THM)
9(3)
1.3.3 Bridgman
12(1)
1.3.4 Accelerated crucible rotation technique (ACRT)
13(5)
1.4 Conclusions
18(1)
References
19(2)
2 Bulk Growth of CdZnTe/CdTe Crystals
21(30)
A. Noda
H. Kurita
R. Hirano
2.1 Introduction
21(1)
2.2 High-purity Cd and Te
22(1)
2.2.1 Cadmium
22(1)
2.2.2 Tellurium
23(1)
2.3 Crystal growth
23(18)
2.3.1 Polycrystal growth
23(1)
2.3.2 VGF single-crystal growth
24(17)
2.4 Wafer processing
41(7)
2.4.1 Process flow
42(2)
2.4.2 Characteristics
44(4)
2.5 Summary
48(1)
Acknowledgements
48(1)
References
49(2)
3 Properties of Cd(Zn)Te Relevant to Use as Substrates
51(24)
S. Adachi
3.1 Introduction
52(1)
3.2 Structural properties
52(3)
3.2.1 Ionicity
52(1)
3.2.2 Lattice constant and crystal density
53(1)
3.2.3 Spontaneous ordering
54(1)
3.2.4 Structural phase transition
55(1)
3.3 Thermal properties
55(3)
3.3.1 Phase diagram
55(1)
3.3.2 Specific heat and Debye temperature
56(1)
3.3.3 Thermal expansion coefficient
57(1)
3.3.4 Thermal conductivity and diffusivity
57(1)
3.4 Mechanical and lattice vibronic properties
58(3)
3.4.1 Elastic constant and related parameters
58(1)
3.4.2 Microhardness
58(1)
3.4.3 Optical phonon frequency and phonon deformation potential
59(2)
3.5 Collective effects and some response characteristics
61(1)
3.5.1 Piezoelectric constant
61(1)
3.5.2 Frohlich coupling constant
61(1)
3.6 Electronic energy-band structure
62(5)
3.6.1 Bandgap energy
62(2)
3.6.2 Electron and hole effective masses
64(1)
3.6.3 Electronic deformation potential
65(1)
3.6.4 Heterojunction band offset
66(1)
3.7 Optical properties
67(3)
3.7.1 The reststrahlen region
67(1)
3.7.2 The interband transition region
68(1)
3.7.3 Near or below the fundamental absorption edge
69(1)
3.8 Carrier transport properties
70(1)
3.8.1 Low-field mobility
70(1)
3.8.2 Minority-carrier transport
71(1)
References
71(4)
4 Substrates for the Epitaxial Growth of MCT
75(20)
J. Garland
R. Sporken
4.1 Introduction
76(1)
4.2 Substrate orientation
77(1)
4.3 CZT substrates
78(4)
4.3.1 Effects of poor thermal conductivity on MCT growth
78(1)
4.3.2 Effects of substrate crystalline defects on MCT growth
79(1)
4.3.3 Effects of substrate impurities
80(1)
4.3.4 Effects of nonuniform substrate composition and substrate roughness
80(1)
4.3.5 Effects of surface nonstoichiometry and contaminants
81(1)
4.3.6 Characterization and screening of CZT substrates
81(1)
4.3.7 Use of buffer layers on CZT substrates
82(1)
4.4 Si-based substrates
82(7)
4.4.1 Nucleation and growth of CdTe on Si
83(1)
4.4.2 The effects of As and Te monolayers
84(1)
4.4.3 Advantages of CdTe/Si substrates
85(1)
4.4.4 Disadvantages of CdTe/Si substrates
86(1)
4.4.5 Reduction of the dislocation density
87(1)
4.4.6 Passivation of dislocations
88(1)
4.5 Other substrates
89(1)
4.6 Summary and conclusions
90(1)
References
90(5)
5 Liquid Phase Epitaxy of MCT
95(18)
P. Capper
5.1 Introduction
95(1)
5.2 Growth
96(1017)
5.2.1 Introduction
96(2)
5.2.2 Phase diagram and defect chemistry
98(1)
5.2.3 LPE growth techniques
98(1015)
5.3 Material characteristics
1113
5.3.1 Composition and thickness
10(95)
5.3.2 Crystal quality and surface morphology
105(1)
5.3.3 Impurity doping and electrical properties
106(2)
5.4 Device status
108(1)
5.5 Summary and future developments
108(2)
References
110(3)
6 Metal-Organic Vapor Phase Epitaxy (MOVPE) Growth
113(18)
C.D. Maxey
6.1 Requirement for epitaxy
113(1)
6.2 History
114(1)
6.3 Substrate choices
115(2)
6.3.1 Orientation
115(1)
6.3.2 Material
116(1)
6.4 Reactor design
117(1)
6.5 Process parameters
118(1)
6.6 Metal-organic sources
119(1)
6.7 Uniformity
120(1)
6.8 Reproducibility
120(3)
6.9 Doping
123(2)
6.10 Defects
125(2)
6.11 Annealing
127(1)
6.12 In situ monitoring
127(1)
6.13 Conclusions
128(1)
References
128(3)
7 MBE Growth of Mercury Cadmium Telluride
131(20)
J. Garland
7.1 Introduction
131(1)
7.1.1 The MBE growth technique
132(1)
7.2 MBE Growth theory and growth modes
132(3)
7.2.1 Growth modes
133(1)
7.2.2 Quasiequilibrium theories
133(1)
7.2.3 Kinetic theories
134(1)
7.3 Substrate mounting
135(1)
7.4 In situ characterization tools
135(4)
7.4.1 Reflection high-energy electron diffraction
135(1)
7.4.2 Spectroscopic ellipsometry
136(3)
7.4.3 Other in situ characterization tools
139(1)
7.5 MCT nucleation and growth
139(2)
7.6 Dopants and dopant activation
141(2)
7.7 Properties of MCT epilayers grown by MBE
143(3)
7.7.1 Electrical properties
143(1)
7.7.2 Optically measurable characteristics
144(1)
7.7.3 Structural properties
144(1)
7.7.4 Surface defects
145(1)
7.8 Conclusions
146(1)
References
147(4)
Part Two Properties 151(296)
8 Mechanical and Thermal Properties
153(52)
M. Martyniuk
J M. Dell
L. Faraone
8.1 Density of MCT
154(4)
8.1.1 Introduction
154(1)
8.1.2 Variation of density with x
154(1)
8.1.3 Variation of density with temperature
155(3)
8.1.4 Conclusion
158(1)
8.2 Lattice parameter of MCT
158(4)
8.2.1 Introduction
158(1)
8.2.2 Variation of lattice parameter with x
158(2)
8.2.3 Variation with temperature
160(2)
8.2.4 Conclusion
162(1)
8.3 Coefficient of thermal expansion of MCT
162(4)
8.3.1 Introduction
162(1)
8.3.2 Variation with x
162(1)
8.3.3 Variation with temperature
163(3)
8.3.4 Conclusion
166(1)
8.4 Elastic parameters of MCT
166(4)
8.4.1 Introduction
166(1)
8.4.2 Elastic parameter values
167(3)
8.4.3 Conclusion
170(1)
8.5 Hardness and deformation characteristics of MCT
170(11)
8.5.1 Introduction
170(1)
8.5.2 Hardness
170(4)
8.5.3 Deformation characteristics of MCT
174(6)
8.5.4 Photoplastic effect
180(1)
8.5.5 Conclusion
180(1)
8.6 Phase diagrams of MCT
181(6)
8.6.1 Introduction
181(1)
8.6.2 Binary systems
181(1)
8.6.3 Solid phases
181(2)
8.6.4 Quasibinary systems
183(2)
8.6.5 Liquidus, solidus, and solvus surfaces
185(1)
8.6.6 Thermodynamics
186(1)
8.6.7 Conclusion
187(1)
8.7 Viscosity of the MCT melt
187(2)
8.7.1 Introduction
187(1)
8.7.2 Temperature variation of kinematic viscosity of the MCT melt
187(2)
8.7.3 Conclusion
189(1)
8.8 Thermal properties of MCT
189(8)
8.8.1 Introduction
189(1)
8.8.2 Specific heat (Cρ)
189(3)
8.8.3 Thermal diffusivity (Dθ)
192(2)
8.8.4 Thermal conductivity (Kθ)
194(3)
8.8.5 Conclusion
197(1)
References
197(8)
9 Optical Properties of MCT
205(34)
J. Chu
Y. Chang
9.1 Introduction
205(1)
9.2 Optical constants and the dielectric function
206(1)
9.3 Theory of band to band optical transition
206(1)
9.4 Near band gap absorption
207(2)
9.5 Analytic expressions and empirical formulas for intrinsic absorption and Urbach tail
209(7)
9.6 Dispersion of the refractive index
216(1)
9.7 Optical constants and related van Hover singularities above the energy gap
217(3)
9.8 Reflection spectra and dielectric function
220(1)
9.9 Multimode model of lattice vibration
221(1)
9.10 Phonon absorption
222(3)
9.11 Raman scattering
225(2)
9.12 Photoluminescence spectroscopy
227(4)
References
231(8)
10 Diffusion in MCT
239(24)
D. Shaw
10.1 Introduction
239(1)
10.2 Self-diffusion
240(3)
10.2.1 Hg self-diffusion
241(1)
10.2.2 Cd self-diffusion
241(1)
10.2.3 Te self-diffusion
241(1)
10.2.4 Self-diffusion in doped material
242(1)
10.2.5 Conclusions
242(1)
10.3 Chemical self-diffusion
243(4)
10.3.1 Composition: xCd~0.2
243(2)
10.3.2 Composition: 0.198 < or equal to xCd < or equal to 0.51
245(1)
10.3.3 Cadmium telluride (CdTe)
245(1)
10.3.4 Conclusions
246(1)
10.4 Compositional interdiffusion
247(6)
10.4.1 D from CID profiles of xCd versus x
248(4)
10.4.2 Conclusions
252(1)
10.5 Impurity diffusion
253(7)
10.5.1 Group 1 impurities
254(2)
10.5.2 Group 3 and 5 impurities
256(2)
10.5.3 Group 6 and 7 impurities
258(2)
References
260(3)
11 Defects in HgCdTe – Fundamental
263(12)
M.A. Berding
11.1 Introduction
263(1)
11.2 Native point defects in zincblende semiconductor
264(2)
11.3 Measurement of native defect properties and density
266(2)
11.4 Ab initio calculations
268(4)
11.4.1 Defect formation energies
268(1)
11.4.2 Electronic excitation energies
269(1)
11.4.3 Defect free energies
270(1)
11.4.4 Prediction of native point defect densities in HgCdgTe
270(2)
11.5 Future challenges
272(1)
References
272(3)
12 Band Structure and Related Properties of HgCdTe
275(22)
C.R. Becker
S. Krishnamurthy
12.1 Introduction
275(2)
12.2 Parameters
277(2)
12.2.1 Optical bandgap
277(1)
12.2.2 Valence band offset
277(2)
12.2.3 Electron effective mass
279(1)
12.3 Electronic band structure
279(9)
12.3.1 k·p theory
279(2)
12.3.2 Hybrid pseudopotential tight-binding method
281(7)
12.4 Comparison with experiment
288(5)
12.4.1 Optical absorption
288(1)
12.4.2 Auger recombination
289(4)
Acknowledgements
293(1)
References
293(4)
13 Conductivity Type Conversion
297(20)
D. Shaw
P. Capper
13.1 Introduction
297(1)
13.2 Native defects in undoped MCT
298(3)
13.3 Native defects in doped MCT
301(1)
13.4 Defect concentrations during cool down
302(2)
13.5 Change of conductivity type
304(3)
13.5.1 CTC by thermal annealing
304(3)
13.5.2 CTC by dry etching
307(1)
13.6 Dry etching by IBM
307(6)
13.6.1 IBM of vacancy-doped MCT
307(2)
13.6.2 Modeling of IBM
309(2)
13.6.3 IBM of impurity-doped MCT
311(1)
13.6.4 Stability (relaxation) of CTC layers with respect to time and temperature after IBM
311(2)
13.7 Plasma etching
313(1)
13.7.1 CTC with Ar and Hg plasmas
313(1)
13.7.2 CTC with H2/CH4 plasmas
313(1)
13.8 Summary
314(1)
References
315(2)
14 Extrinsic Doping
317(22)
D. Shaw
P. Capper
14.1 Introduction
318(1)
14.2 Impuriety activity
319(3)
14.2.1 Group I impurities
320(1)
14.2.2 Group II impurities
320(1)
14.2.3 Group III impurities
321(1)
14.2.4 Grump IV impurities
321(1)
14.2.5 Group V impurities
321(1)
14.2.6 Group VI impurities
321(1)
14.2.7 Group VII impurities
322(1)
14.2.8 Group VIII impurities
322(1)
14.3 Thermal ionization energies of impurities
322(2)
14.3.1 CdTe
322(1)
14.3.2 LWIR and MWIR MCT
323(1)
14.4 Segregation properties of impurities
324(3)
14.4.1 Segregation in CdTe
325(1)
14.4.2 Segregation in LWIR and MWIR MCT
326(1)
14.5 Traps and recombination centers
327(3)
14.5.1 Minority carrier lifetime in MCT
328(1)
14.5.2 Reducing the concentrations of SRH centers
328(2)
14.6 Donor and acceptor doping in LWIR and MWIR MCT
330(4)
14.6.1 In
330(1)
14.6.2 Iodine
331(1)
14.6.3 Au
332(1)
14.6.4 As
332(2)
14.7 Residual defects
334(1)
14.8 Conclusions
335(1)
References
335(4)
15 Structure and Electrical Characteristics of Metal/MCT Interfaces
339(36)
R.J. Westerhout
R.H. Sewell
J.M. Dell
L. Faraone
C.A. Musca
15.1 Introduction
340(1)
15.2 Reactive/intermediately reactive/nonreactive categories
341(3)
15.2.1 Au/MCT interface
341(1)
15.2.2 In/MCT interface
341(1)
15.2.3 Ag/MCT interface
342(1)
15.2.4 Cu/MCT interface
343(1)
15.2.5 Sb/MCT interface
343(1)
15.2.6 Cr/MCT interface
343(1)
15.3 Ultrareactive/reactive categories
344(3)
15.3.1 Al/MCT interface
344(1)
15.3.2 Pt/MCT interface
345(1)
15.3.3 Sm/MCT interface
345(1)
15.3.4 Ti/MCT interface
345(1)
15.3.5 Pd/MCT interface
346(1)
15.3.6 Sn/MCT interface
346(1)
15.3.7 Conclusion
347(1)
15.4 Passivation of MCT
347(7)
15.4.1 Introduction
347(1)
15.4.2 Device design and passivation requirements
347(1)
15.4.3 Criteria for good passivation
348(1)
15.4.4 Properties for non CdTe passivant films on MCT
348(1)
15.4.5 Passivation of MCT with CdTe
348(6)
15.4.6 Conclusion
354(1)
15.5 Contacts to MCT
354(2)
15.5.1 Introduction
354(1)
15.5.2 Metal/MCT contacts
354(1)
15.5.3 Schottky barrier contacts
355(1)
15.5.4 Ohmic contacts
356(1)
15.5.5 Conclusions
356(1)
15.6 Surface Effects on MCT
356(3)
15.6.1 Introduction
356(1)
15.6.2 Surface recombination velocity
357(1)
15.6.3 Recombination velocity at heterointerfaces
357(1)
15.6.4 Gated photoconductors
358(1)
15.6.5 Gated photodiodes
358(1)
15.6.6 Conclusions
359(1)
15.7 Surface Structure of CdTe and MCT
359(11)
15.7.1 Introduction
359(1)
15.7.2 Surface structure and epitaxial growth
360(1)
15.7.3 RHEED analysis of the (211) surface
361(2)
15.7.4 Reconstruction of the (110) surface
363(2)
15.7.5 Reconstruction of the (100) surface
365(2)
15.7.6 Reconstruction of (111) surfaces
367(3)
15.7.7 Conclusion
370(1)
References
370(5)
16 MCT Superlattices for VLWIR Detectors and Focal Plane Arrays
375(24)
J. Garland
16.1 Introduction
376(1)
16.2 Why HgTe-based superlattices
377(7)
16.2.1 Advantages of HgTe/CdTe superlattices over MCT alloys
378(3)
16.2.2 Problems with the use of HgTe/CdTe superlattices in VLWIR detectors and FPAs
381(1)
16.2.3 Use of HgTe/CdTe superlattices as buffer layers on CdZnTe before MCT growth
382(1)
16.2.4 Use of MCT-based superlattices as thermoelectric coolers for MCT detectors
383(1)
16.2.5 HgTe/ZnTe superlattices
383(1)
16.3 Calculated properties
384(2)
16.1.1 Normal electronic band structure: band structures and optical absorptivities
384(1)
16.3.2 Inverted electronic band structure: band structure and optical absorptivity
385(1)
16.4 Growth
386(3)
16.4.1 Substrate orientation
387(1)
16.4.2 Doping
388(1)
16.5 Interdiffusion
389(6)
16.5.1 Effect of interdiffusion on the bandgap and optical absorption spectra
390(1)
16.5.2 Measuring interdiffusion by X-ray diffraction
391(2)
16.5.3 Measuring interdiffusion by STEM
393(2)
16.6 Conclusions
395(1)
Acknowledgements
396(1)
References
396(3)
17 Dry Plasma Processing of Mercury Cadmium Telluride and Related II–VIs
399(30)
A.J. Stoltz
17.1 Introduction
400(1)
17.2 Effects of plasma gases on MCT
401(2)
17.3 Plasma parameters
403(8)
17.3.1 Physics of plasmas
403(2)
17.3.2 Hydrogen variations
405(3)
17.3.3 Plasma parameters–effects on II–VI semiconductors
408(2)
17.3.4 Plasma parameter change ECR to ICP
410(1)
17.4 Characterization–surfaces of plasma-processed MCT
411(5)
17.4.1 Surface chemical analysis
411(2)
17.4.2 In vacuo crystallographic surface analysis
413(1)
17.4.3 Ex vacuo atomic force microscopy
413(3)
17.5 Manufacturing issues and solutions
416(4)
17.5.1 Etch lag and lateral photoresist etching–ion angular distribution (microloading, RIE lag)
416(2)
17.5.2 Macroloading
418(2)
17.6 Plasma processes in the production of II–VI materials
420(4)
17.6.1 Trench delineation
421(1)
17.6.2 Type conversion
422(1)
17.6.3 Via formation substitutionally doped MCT
422(1)
17.6.4 Microlenses and antireflective structures
422(2)
17.6.5 Cleaning
424(1)
17.7 Conclusions and future efforts
424(1)
References
425(4)
18 MCT Photoconductive Infrared Detectors
429(18)
I.M. Baker
18.1 Introduction
429(3)
18.1.1 Historical perspective and early detectors
430(1)
18.1.2 Introduction to MCT
431(1)
18.1.3 MCT photoconductive arrays
431(1)
18.2 Applications and sensor design
432(2)
18.3 Photoconductive detectors in MCT and related alloys
434(6)
18.3.1 Introduction to the technology of photoconductor arrays
435(1)
18.3.2 Theoretical fundamentals for LW arrays
436(3)
18.3.3 Special case of MW arrays
439(1)
18.3.4 Nonequilibrium effects in photoconductors
439(1)
18.4 SPRITE detectors
440(4)
18.4.1 Introduction to the SPRITE detector
440(1)
18.4.2 SPRITE operation and performance
441(3)
18.4.3 Detector design and systems applications
444(1)
18.5 Conclusions on photoconductive MCT detectors
444(1)
Acknowledgements
445(1)
References
445(2)
Part Three Applications 447(92)
19 HgCdTe Photovoltaic Infrared Detectors
449(20)
I.M. Baker
19.1 Introduction
450(1)
19.2 Advantages of the photovoltaic device in MCT
450(1)
19.3 Applications
450(1)
19.4 Fundamentals of MCT photodiodes
451(3)
19.4.1 Ideal photovoltaic devices
451(1)
19.4.2 Nonideal behavior in MCT diodes
452(2)
19.5 Theoretical foundations for MCT array technology
454(3)
19.5.1 Thermal diffusion currents in MCT
454(1)
19.5.2 Thermal generation through traps in the depletion region
455(1)
19.5.3 Interband tunnelling
455(1)
19.5.4 Trap-assisted tunnelling
456(1)
19.5.5 Impact ionization
456(1)
19.5.6 Photocurrent and quantum efficiency
457(1)
19.5.7 Excess noise sources in MCT diodes
457(1)
19.6 Manufacturing technology for MCT arrays
457(6)
19.6.1 Junction forming techniques
458(1)
19.6.2 Via-hole technologies using LPE
458(1)
19.6.3 Planar device structures using LPE
459(1)
19.6.4 Double layer heterojunction devices (DLHJ)
460(1)
19.6.5 Wafer-scale processes using vapor phase epitaxy on low-cost substrates
461(2)
19.6.6 MCT 2D arrays for the 3-5μm (MW) band
463(1)
19.6.7 MCT 2D arrays for the 8-12μm (LW) band
463(1)
19.7 Towards GEN III detectors
463(2)
19.7.1 Two-color array technology
463(1)
19.7.2 Higher operating temperature (HOT) device structures
464(1)
19.8 Conclusions and future trends for photovoltaic MCT arrays
465(1)
References
465(4)
20 Nonequilibrium, Dual-Band and Emission Devices
469(24)
C. Jones
N. Gordon
20.1 Introduction
469(1)
20.2 Nonequilibrium devices
470(6)
20.2.1 Introduction and theory
470(3)
20.2.2 Nonequilibrium detectors
473(3)
20.2.3 Emitters and other uses
476(1)
20.3 Dual-band devices
476(8)
20.3.1 Introduction
476(1)
20.3.2 Mesa diodes
477(5)
20.3.3 Planar diodes
482(1)
20.3.4 Stacked loophole
483(1)
20.4 Emission devices
484(5)
20.5 Conclusions
489(1)
References
489(4)
21 HgCdTe Electron Avalanche Photodiodes (EAPDs)
493(20)
I. Baker
M. Kinch
21.1 Introduction and applications
493(1)
21.2 The avalanche multiplication effect
494(1)
21.3 Physics of MCT EAPDs
495(9)
21.3.1 Phenomenological model for EAPDs
496(1)
21.3.2 Energy dispersion factor, α(E)
497(2)
21.3.3 Impact ionization threshold energy
499(2)
21.3.4 EAPD diodes at room temperature
501(2)
21.3.5 MCT EAPD dark currents
503(1)
21.3.6 MCT EAPD excess noise
504(1)
21.4 Technology of MCT EAPDs
504(2)
21.4.1 Theoretical foundations for the EAPD device technology
504(1)
21.4.2 Via-hole technology
505(1)
21.4.3 Planar and advanced structures
506(1)
21.5 Reported performance of arrays of MCT EAPDs
506(4)
21.5.1 Avalanche gain
506(1)
21.5.2 Noise figure
507(1)
21.5.3 Dark current
507(3)
21.6 LGI as a practical example of MCT EAPDs
510(1)
21.7 Conclusions and future developments
511(1)
References
511(2)
22 Room Temperature IR Photodetectors
513(26)
J. Piotrowski
A. Piotrowski
22.1 Introduction
513(1)
22.2 Performance of room temperature infrared photodetectors
514(5)
22.2.1 Generalized model
514(3)
22.2.2 Reduced volume devices
517(1)
22.2.3 Design of high temperature photodetectors
518(1)
22.3 HgCdTe as a material for room temperature photodetectors
519(3)
22.3.1 Ultimate performance of HgCdTe devices
519(2)
22.3.2 Non-equilibrium devices
521(1)
22.3.3 3D high-temperature photodetector concept
522(1)
22.4 Photoconductive devices
522(2)
22.5 PEM, magnetoconcentration, and Dember IR detectors
524(2)
22.5.1 PEM detectors
524(1)
22.5.2 Magnetoconcentration detectors
525(1)
22.5.3 Dember detectors
526(1)
22.6 Photodiodes
526(9)
22.6.1 Dark current and resistance of near room temperature photodiodes
527(1)
22.6.2 Practical HgCdTe photodiodes
527(8)
22.7 Conclusions
535(1)
References
535(4)
Index 539
Dr. Peter Capper is a Materials Team Leader at BAE Systems Infrared Ltd., in Southampton, UK.

James Garland is the editor of Mercury Cadmium Telluride: Growth, Properties and Applications, published by Wiley.