Series Preface |
|
xxi | |
Preface |
|
xxiii | |
Foreword |
|
xxvii | |
List of Contributors |
|
xxxi | |
Part One Growth |
|
1 | (150) |
|
1 Bulk Growth of Mercury Cadmium Telluride (MCT) |
|
|
3 | (18) |
|
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (13) |
|
1.3.1 Solid state recrystallization (SSR) |
|
|
6 | (3) |
|
1.3.2 Traveling heater method (THM) |
|
|
9 | (3) |
|
|
12 | (1) |
|
1.3.4 Accelerated crucible rotation technique (ACRT) |
|
|
13 | (5) |
|
|
18 | (1) |
|
|
19 | (2) |
|
2 Bulk Growth of CdZnTe/CdTe Crystals |
|
|
21 | (30) |
|
|
|
|
|
21 | (1) |
|
2.2 High-purity Cd and Te |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (18) |
|
|
23 | (1) |
|
2.3.2 VGF single-crystal growth |
|
|
24 | (17) |
|
|
41 | (7) |
|
|
42 | (2) |
|
|
44 | (4) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
3 Properties of Cd(Zn)Te Relevant to Use as Substrates |
|
|
51 | (24) |
|
|
|
52 | (1) |
|
3.2 Structural properties |
|
|
52 | (3) |
|
|
52 | (1) |
|
3.2.2 Lattice constant and crystal density |
|
|
53 | (1) |
|
3.2.3 Spontaneous ordering |
|
|
54 | (1) |
|
3.2.4 Structural phase transition |
|
|
55 | (1) |
|
|
55 | (3) |
|
|
55 | (1) |
|
3.3.2 Specific heat and Debye temperature |
|
|
56 | (1) |
|
3.3.3 Thermal expansion coefficient |
|
|
57 | (1) |
|
3.3.4 Thermal conductivity and diffusivity |
|
|
57 | (1) |
|
3.4 Mechanical and lattice vibronic properties |
|
|
58 | (3) |
|
3.4.1 Elastic constant and related parameters |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.4.3 Optical phonon frequency and phonon deformation potential |
|
|
59 | (2) |
|
3.5 Collective effects and some response characteristics |
|
|
61 | (1) |
|
3.5.1 Piezoelectric constant |
|
|
61 | (1) |
|
3.5.2 Frohlich coupling constant |
|
|
61 | (1) |
|
3.6 Electronic energy-band structure |
|
|
62 | (5) |
|
|
62 | (2) |
|
3.6.2 Electron and hole effective masses |
|
|
64 | (1) |
|
3.6.3 Electronic deformation potential |
|
|
65 | (1) |
|
3.6.4 Heterojunction band offset |
|
|
66 | (1) |
|
|
67 | (3) |
|
3.7.1 The reststrahlen region |
|
|
67 | (1) |
|
3.7.2 The interband transition region |
|
|
68 | (1) |
|
3.7.3 Near or below the fundamental absorption edge |
|
|
69 | (1) |
|
3.8 Carrier transport properties |
|
|
70 | (1) |
|
|
70 | (1) |
|
3.8.2 Minority-carrier transport |
|
|
71 | (1) |
|
|
71 | (4) |
|
4 Substrates for the Epitaxial Growth of MCT |
|
|
75 | (20) |
|
|
|
|
76 | (1) |
|
4.2 Substrate orientation |
|
|
77 | (1) |
|
|
78 | (4) |
|
4.3.1 Effects of poor thermal conductivity on MCT growth |
|
|
78 | (1) |
|
4.3.2 Effects of substrate crystalline defects on MCT growth |
|
|
79 | (1) |
|
4.3.3 Effects of substrate impurities |
|
|
80 | (1) |
|
4.3.4 Effects of nonuniform substrate composition and substrate roughness |
|
|
80 | (1) |
|
4.3.5 Effects of surface nonstoichiometry and contaminants |
|
|
81 | (1) |
|
4.3.6 Characterization and screening of CZT substrates |
|
|
81 | (1) |
|
4.3.7 Use of buffer layers on CZT substrates |
|
|
82 | (1) |
|
|
82 | (7) |
|
4.4.1 Nucleation and growth of CdTe on Si |
|
|
83 | (1) |
|
4.4.2 The effects of As and Te monolayers |
|
|
84 | (1) |
|
4.4.3 Advantages of CdTe/Si substrates |
|
|
85 | (1) |
|
4.4.4 Disadvantages of CdTe/Si substrates |
|
|
86 | (1) |
|
4.4.5 Reduction of the dislocation density |
|
|
87 | (1) |
|
4.4.6 Passivation of dislocations |
|
|
88 | (1) |
|
|
89 | (1) |
|
4.6 Summary and conclusions |
|
|
90 | (1) |
|
|
90 | (5) |
|
5 Liquid Phase Epitaxy of MCT |
|
|
95 | (18) |
|
|
|
95 | (1) |
|
|
96 | (1017) |
|
|
96 | (2) |
|
5.2.2 Phase diagram and defect chemistry |
|
|
98 | (1) |
|
5.2.3 LPE growth techniques |
|
|
98 | (1015) |
|
5.3 Material characteristics |
|
|
1113 | |
|
5.3.1 Composition and thickness |
|
|
10 | (95) |
|
5.3.2 Crystal quality and surface morphology |
|
|
105 | (1) |
|
5.3.3 Impurity doping and electrical properties |
|
|
106 | (2) |
|
|
108 | (1) |
|
5.5 Summary and future developments |
|
|
108 | (2) |
|
|
110 | (3) |
|
6 Metal-Organic Vapor Phase Epitaxy (MOVPE) Growth |
|
|
113 | (18) |
|
|
6.1 Requirement for epitaxy |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.6 Metal-organic sources |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (3) |
|
|
123 | (2) |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (3) |
|
7 MBE Growth of Mercury Cadmium Telluride |
|
|
131 | (20) |
|
|
|
131 | (1) |
|
7.1.1 The MBE growth technique |
|
|
132 | (1) |
|
7.2 MBE Growth theory and growth modes |
|
|
132 | (3) |
|
|
133 | (1) |
|
7.2.2 Quasiequilibrium theories |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
7.4 In situ characterization tools |
|
|
135 | (4) |
|
7.4.1 Reflection high-energy electron diffraction |
|
|
135 | (1) |
|
7.4.2 Spectroscopic ellipsometry |
|
|
136 | (3) |
|
7.4.3 Other in situ characterization tools |
|
|
139 | (1) |
|
7.5 MCT nucleation and growth |
|
|
139 | (2) |
|
7.6 Dopants and dopant activation |
|
|
141 | (2) |
|
7.7 Properties of MCT epilayers grown by MBE |
|
|
143 | (3) |
|
7.7.1 Electrical properties |
|
|
143 | (1) |
|
7.7.2 Optically measurable characteristics |
|
|
144 | (1) |
|
7.7.3 Structural properties |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (4) |
Part Two Properties |
|
151 | (296) |
|
8 Mechanical and Thermal Properties |
|
|
153 | (52) |
|
|
|
|
|
154 | (4) |
|
|
154 | (1) |
|
8.1.2 Variation of density with x |
|
|
154 | (1) |
|
8.1.3 Variation of density with temperature |
|
|
155 | (3) |
|
|
158 | (1) |
|
8.2 Lattice parameter of MCT |
|
|
158 | (4) |
|
|
158 | (1) |
|
8.2.2 Variation of lattice parameter with x |
|
|
158 | (2) |
|
8.2.3 Variation with temperature |
|
|
160 | (2) |
|
|
162 | (1) |
|
8.3 Coefficient of thermal expansion of MCT |
|
|
162 | (4) |
|
|
162 | (1) |
|
|
162 | (1) |
|
8.3.3 Variation with temperature |
|
|
163 | (3) |
|
|
166 | (1) |
|
8.4 Elastic parameters of MCT |
|
|
166 | (4) |
|
|
166 | (1) |
|
8.4.2 Elastic parameter values |
|
|
167 | (3) |
|
|
170 | (1) |
|
8.5 Hardness and deformation characteristics of MCT |
|
|
170 | (11) |
|
|
170 | (1) |
|
|
170 | (4) |
|
8.5.3 Deformation characteristics of MCT |
|
|
174 | (6) |
|
8.5.4 Photoplastic effect |
|
|
180 | (1) |
|
|
180 | (1) |
|
8.6 Phase diagrams of MCT |
|
|
181 | (6) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (2) |
|
8.6.4 Quasibinary systems |
|
|
183 | (2) |
|
8.6.5 Liquidus, solidus, and solvus surfaces |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
8.7 Viscosity of the MCT melt |
|
|
187 | (2) |
|
|
187 | (1) |
|
8.7.2 Temperature variation of kinematic viscosity of the MCT melt |
|
|
187 | (2) |
|
|
189 | (1) |
|
8.8 Thermal properties of MCT |
|
|
189 | (8) |
|
|
189 | (1) |
|
|
189 | (3) |
|
8.8.3 Thermal diffusivity (Dθ) |
|
|
192 | (2) |
|
8.8.4 Thermal conductivity (Kθ) |
|
|
194 | (3) |
|
|
197 | (1) |
|
|
197 | (8) |
|
9 Optical Properties of MCT |
|
|
205 | (34) |
|
|
|
|
205 | (1) |
|
9.2 Optical constants and the dielectric function |
|
|
206 | (1) |
|
9.3 Theory of band to band optical transition |
|
|
206 | (1) |
|
9.4 Near band gap absorption |
|
|
207 | (2) |
|
9.5 Analytic expressions and empirical formulas for intrinsic absorption and Urbach tail |
|
|
209 | (7) |
|
9.6 Dispersion of the refractive index |
|
|
216 | (1) |
|
9.7 Optical constants and related van Hover singularities above the energy gap |
|
|
217 | (3) |
|
9.8 Reflection spectra and dielectric function |
|
|
220 | (1) |
|
9.9 Multimode model of lattice vibration |
|
|
221 | (1) |
|
|
222 | (3) |
|
|
225 | (2) |
|
9.12 Photoluminescence spectroscopy |
|
|
227 | (4) |
|
|
231 | (8) |
|
|
239 | (24) |
|
|
|
239 | (1) |
|
|
240 | (3) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
10.2.4 Self-diffusion in doped material |
|
|
242 | (1) |
|
|
242 | (1) |
|
10.3 Chemical self-diffusion |
|
|
243 | (4) |
|
10.3.1 Composition: xCd~0.2 |
|
|
243 | (2) |
|
10.3.2 Composition: 0.198 < or equal to xCd < or equal to 0.51 |
|
|
245 | (1) |
|
10.3.3 Cadmium telluride (CdTe) |
|
|
245 | (1) |
|
|
246 | (1) |
|
10.4 Compositional interdiffusion |
|
|
247 | (6) |
|
10.4.1 D from CID profiles of xCd versus x |
|
|
248 | (4) |
|
|
252 | (1) |
|
|
253 | (7) |
|
10.5.1 Group 1 impurities |
|
|
254 | (2) |
|
10.5.2 Group 3 and 5 impurities |
|
|
256 | (2) |
|
10.5.3 Group 6 and 7 impurities |
|
|
258 | (2) |
|
|
260 | (3) |
|
11 Defects in HgCdTe – Fundamental |
|
|
263 | (12) |
|
|
|
263 | (1) |
|
11.2 Native point defects in zincblende semiconductor |
|
|
264 | (2) |
|
11.3 Measurement of native defect properties and density |
|
|
266 | (2) |
|
11.4 Ab initio calculations |
|
|
268 | (4) |
|
11.4.1 Defect formation energies |
|
|
268 | (1) |
|
11.4.2 Electronic excitation energies |
|
|
269 | (1) |
|
11.4.3 Defect free energies |
|
|
270 | (1) |
|
11.4.4 Prediction of native point defect densities in HgCdgTe |
|
|
270 | (2) |
|
|
272 | (1) |
|
|
272 | (3) |
|
12 Band Structure and Related Properties of HgCdTe |
|
|
275 | (22) |
|
|
|
|
275 | (2) |
|
|
277 | (2) |
|
|
277 | (1) |
|
12.2.2 Valence band offset |
|
|
277 | (2) |
|
12.2.3 Electron effective mass |
|
|
279 | (1) |
|
12.3 Electronic band structure |
|
|
279 | (9) |
|
|
279 | (2) |
|
12.3.2 Hybrid pseudopotential tight-binding method |
|
|
281 | (7) |
|
12.4 Comparison with experiment |
|
|
288 | (5) |
|
12.4.1 Optical absorption |
|
|
288 | (1) |
|
12.4.2 Auger recombination |
|
|
289 | (4) |
|
|
293 | (1) |
|
|
293 | (4) |
|
13 Conductivity Type Conversion |
|
|
297 | (20) |
|
|
|
|
297 | (1) |
|
13.2 Native defects in undoped MCT |
|
|
298 | (3) |
|
13.3 Native defects in doped MCT |
|
|
301 | (1) |
|
13.4 Defect concentrations during cool down |
|
|
302 | (2) |
|
13.5 Change of conductivity type |
|
|
304 | (3) |
|
13.5.1 CTC by thermal annealing |
|
|
304 | (3) |
|
13.5.2 CTC by dry etching |
|
|
307 | (1) |
|
|
307 | (6) |
|
13.6.1 IBM of vacancy-doped MCT |
|
|
307 | (2) |
|
|
309 | (2) |
|
13.6.3 IBM of impurity-doped MCT |
|
|
311 | (1) |
|
13.6.4 Stability (relaxation) of CTC layers with respect to time and temperature after IBM |
|
|
311 | (2) |
|
|
313 | (1) |
|
13.7.1 CTC with Ar and Hg plasmas |
|
|
313 | (1) |
|
13.7.2 CTC with H2/CH4 plasmas |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (2) |
|
|
317 | (22) |
|
|
|
|
318 | (1) |
|
|
319 | (3) |
|
14.2.1 Group I impurities |
|
|
320 | (1) |
|
14.2.2 Group II impurities |
|
|
320 | (1) |
|
14.2.3 Group III impurities |
|
|
321 | (1) |
|
14.2.4 Grump IV impurities |
|
|
321 | (1) |
|
14.2.5 Group V impurities |
|
|
321 | (1) |
|
14.2.6 Group VI impurities |
|
|
321 | (1) |
|
14.2.7 Group VII impurities |
|
|
322 | (1) |
|
14.2.8 Group VIII impurities |
|
|
322 | (1) |
|
14.3 Thermal ionization energies of impurities |
|
|
322 | (2) |
|
|
322 | (1) |
|
|
323 | (1) |
|
14.4 Segregation properties of impurities |
|
|
324 | (3) |
|
14.4.1 Segregation in CdTe |
|
|
325 | (1) |
|
14.4.2 Segregation in LWIR and MWIR MCT |
|
|
326 | (1) |
|
14.5 Traps and recombination centers |
|
|
327 | (3) |
|
14.5.1 Minority carrier lifetime in MCT |
|
|
328 | (1) |
|
14.5.2 Reducing the concentrations of SRH centers |
|
|
328 | (2) |
|
14.6 Donor and acceptor doping in LWIR and MWIR MCT |
|
|
330 | (4) |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (4) |
|
15 Structure and Electrical Characteristics of Metal/MCT Interfaces |
|
|
339 | (36) |
|
|
|
|
|
|
|
340 | (1) |
|
15.2 Reactive/intermediately reactive/nonreactive categories |
|
|
341 | (3) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
343 | (1) |
|
|
343 | (1) |
|
15.3 Ultrareactive/reactive categories |
|
|
344 | (3) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (7) |
|
|
347 | (1) |
|
15.4.2 Device design and passivation requirements |
|
|
347 | (1) |
|
15.4.3 Criteria for good passivation |
|
|
348 | (1) |
|
15.4.4 Properties for non CdTe passivant films on MCT |
|
|
348 | (1) |
|
15.4.5 Passivation of MCT with CdTe |
|
|
348 | (6) |
|
|
354 | (1) |
|
|
354 | (2) |
|
|
354 | (1) |
|
15.5.2 Metal/MCT contacts |
|
|
354 | (1) |
|
15.5.3 Schottky barrier contacts |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
15.6 Surface Effects on MCT |
|
|
356 | (3) |
|
|
356 | (1) |
|
15.6.2 Surface recombination velocity |
|
|
357 | (1) |
|
15.6.3 Recombination velocity at heterointerfaces |
|
|
357 | (1) |
|
15.6.4 Gated photoconductors |
|
|
358 | (1) |
|
|
358 | (1) |
|
|
359 | (1) |
|
15.7 Surface Structure of CdTe and MCT |
|
|
359 | (11) |
|
|
359 | (1) |
|
15.7.2 Surface structure and epitaxial growth |
|
|
360 | (1) |
|
15.7.3 RHEED analysis of the (211) surface |
|
|
361 | (2) |
|
15.7.4 Reconstruction of the (110) surface |
|
|
363 | (2) |
|
15.7.5 Reconstruction of the (100) surface |
|
|
365 | (2) |
|
15.7.6 Reconstruction of (111) surfaces |
|
|
367 | (3) |
|
|
370 | (1) |
|
|
370 | (5) |
|
16 MCT Superlattices for VLWIR Detectors and Focal Plane Arrays |
|
|
375 | (24) |
|
|
|
376 | (1) |
|
16.2 Why HgTe-based superlattices |
|
|
377 | (7) |
|
16.2.1 Advantages of HgTe/CdTe superlattices over MCT alloys |
|
|
378 | (3) |
|
16.2.2 Problems with the use of HgTe/CdTe superlattices in VLWIR detectors and FPAs |
|
|
381 | (1) |
|
16.2.3 Use of HgTe/CdTe superlattices as buffer layers on CdZnTe before MCT growth |
|
|
382 | (1) |
|
16.2.4 Use of MCT-based superlattices as thermoelectric coolers for MCT detectors |
|
|
383 | (1) |
|
16.2.5 HgTe/ZnTe superlattices |
|
|
383 | (1) |
|
16.3 Calculated properties |
|
|
384 | (2) |
|
16.1.1 Normal electronic band structure: band structures and optical absorptivities |
|
|
384 | (1) |
|
16.3.2 Inverted electronic band structure: band structure and optical absorptivity |
|
|
385 | (1) |
|
|
386 | (3) |
|
16.4.1 Substrate orientation |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (6) |
|
16.5.1 Effect of interdiffusion on the bandgap and optical absorption spectra |
|
|
390 | (1) |
|
16.5.2 Measuring interdiffusion by X-ray diffraction |
|
|
391 | (2) |
|
16.5.3 Measuring interdiffusion by STEM |
|
|
393 | (2) |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
396 | (3) |
|
17 Dry Plasma Processing of Mercury Cadmium Telluride and Related II–VIs |
|
|
399 | (30) |
|
|
|
400 | (1) |
|
17.2 Effects of plasma gases on MCT |
|
|
401 | (2) |
|
|
403 | (8) |
|
17.3.1 Physics of plasmas |
|
|
403 | (2) |
|
17.3.2 Hydrogen variations |
|
|
405 | (3) |
|
17.3.3 Plasma parameters–effects on II–VI semiconductors |
|
|
408 | (2) |
|
17.3.4 Plasma parameter change ECR to ICP |
|
|
410 | (1) |
|
17.4 Characterization–surfaces of plasma-processed MCT |
|
|
411 | (5) |
|
17.4.1 Surface chemical analysis |
|
|
411 | (2) |
|
17.4.2 In vacuo crystallographic surface analysis |
|
|
413 | (1) |
|
17.4.3 Ex vacuo atomic force microscopy |
|
|
413 | (3) |
|
17.5 Manufacturing issues and solutions |
|
|
416 | (4) |
|
17.5.1 Etch lag and lateral photoresist etching–ion angular distribution (microloading, RIE lag) |
|
|
416 | (2) |
|
|
418 | (2) |
|
17.6 Plasma processes in the production of II–VI materials |
|
|
420 | (4) |
|
17.6.1 Trench delineation |
|
|
421 | (1) |
|
|
422 | (1) |
|
17.6.3 Via formation substitutionally doped MCT |
|
|
422 | (1) |
|
17.6.4 Microlenses and antireflective structures |
|
|
422 | (2) |
|
|
424 | (1) |
|
17.7 Conclusions and future efforts |
|
|
424 | (1) |
|
|
425 | (4) |
|
18 MCT Photoconductive Infrared Detectors |
|
|
429 | (18) |
|
|
|
429 | (3) |
|
18.1.1 Historical perspective and early detectors |
|
|
430 | (1) |
|
18.1.2 Introduction to MCT |
|
|
431 | (1) |
|
18.1.3 MCT photoconductive arrays |
|
|
431 | (1) |
|
18.2 Applications and sensor design |
|
|
432 | (2) |
|
18.3 Photoconductive detectors in MCT and related alloys |
|
|
434 | (6) |
|
18.3.1 Introduction to the technology of photoconductor arrays |
|
|
435 | (1) |
|
18.3.2 Theoretical fundamentals for LW arrays |
|
|
436 | (3) |
|
18.3.3 Special case of MW arrays |
|
|
439 | (1) |
|
18.3.4 Nonequilibrium effects in photoconductors |
|
|
439 | (1) |
|
|
440 | (4) |
|
18.4.1 Introduction to the SPRITE detector |
|
|
440 | (1) |
|
18.4.2 SPRITE operation and performance |
|
|
441 | (3) |
|
18.4.3 Detector design and systems applications |
|
|
444 | (1) |
|
18.5 Conclusions on photoconductive MCT detectors |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
445 | (2) |
Part Three Applications |
|
447 | (92) |
|
19 HgCdTe Photovoltaic Infrared Detectors |
|
|
449 | (20) |
|
|
|
450 | (1) |
|
19.2 Advantages of the photovoltaic device in MCT |
|
|
450 | (1) |
|
|
450 | (1) |
|
19.4 Fundamentals of MCT photodiodes |
|
|
451 | (3) |
|
19.4.1 Ideal photovoltaic devices |
|
|
451 | (1) |
|
19.4.2 Nonideal behavior in MCT diodes |
|
|
452 | (2) |
|
19.5 Theoretical foundations for MCT array technology |
|
|
454 | (3) |
|
19.5.1 Thermal diffusion currents in MCT |
|
|
454 | (1) |
|
19.5.2 Thermal generation through traps in the depletion region |
|
|
455 | (1) |
|
19.5.3 Interband tunnelling |
|
|
455 | (1) |
|
19.5.4 Trap-assisted tunnelling |
|
|
456 | (1) |
|
|
456 | (1) |
|
19.5.6 Photocurrent and quantum efficiency |
|
|
457 | (1) |
|
19.5.7 Excess noise sources in MCT diodes |
|
|
457 | (1) |
|
19.6 Manufacturing technology for MCT arrays |
|
|
457 | (6) |
|
19.6.1 Junction forming techniques |
|
|
458 | (1) |
|
19.6.2 Via-hole technologies using LPE |
|
|
458 | (1) |
|
19.6.3 Planar device structures using LPE |
|
|
459 | (1) |
|
19.6.4 Double layer heterojunction devices (DLHJ) |
|
|
460 | (1) |
|
19.6.5 Wafer-scale processes using vapor phase epitaxy on low-cost substrates |
|
|
461 | (2) |
|
19.6.6 MCT 2D arrays for the 3-5μm (MW) band |
|
|
463 | (1) |
|
19.6.7 MCT 2D arrays for the 8-12μm (LW) band |
|
|
463 | (1) |
|
19.7 Towards GEN III detectors |
|
|
463 | (2) |
|
19.7.1 Two-color array technology |
|
|
463 | (1) |
|
19.7.2 Higher operating temperature (HOT) device structures |
|
|
464 | (1) |
|
19.8 Conclusions and future trends for photovoltaic MCT arrays |
|
|
465 | (1) |
|
|
465 | (4) |
|
20 Nonequilibrium, Dual-Band and Emission Devices |
|
|
469 | (24) |
|
|
|
|
469 | (1) |
|
20.2 Nonequilibrium devices |
|
|
470 | (6) |
|
20.2.1 Introduction and theory |
|
|
470 | (3) |
|
20.2.2 Nonequilibrium detectors |
|
|
473 | (3) |
|
20.2.3 Emitters and other uses |
|
|
476 | (1) |
|
|
476 | (8) |
|
|
476 | (1) |
|
|
477 | (5) |
|
|
482 | (1) |
|
|
483 | (1) |
|
|
484 | (5) |
|
|
489 | (1) |
|
|
489 | (4) |
|
21 HgCdTe Electron Avalanche Photodiodes (EAPDs) |
|
|
493 | (20) |
|
|
|
21.1 Introduction and applications |
|
|
493 | (1) |
|
21.2 The avalanche multiplication effect |
|
|
494 | (1) |
|
21.3 Physics of MCT EAPDs |
|
|
495 | (9) |
|
21.3.1 Phenomenological model for EAPDs |
|
|
496 | (1) |
|
21.3.2 Energy dispersion factor, α(E) |
|
|
497 | (2) |
|
21.3.3 Impact ionization threshold energy |
|
|
499 | (2) |
|
21.3.4 EAPD diodes at room temperature |
|
|
501 | (2) |
|
21.3.5 MCT EAPD dark currents |
|
|
503 | (1) |
|
21.3.6 MCT EAPD excess noise |
|
|
504 | (1) |
|
21.4 Technology of MCT EAPDs |
|
|
504 | (2) |
|
21.4.1 Theoretical foundations for the EAPD device technology |
|
|
504 | (1) |
|
21.4.2 Via-hole technology |
|
|
505 | (1) |
|
21.4.3 Planar and advanced structures |
|
|
506 | (1) |
|
21.5 Reported performance of arrays of MCT EAPDs |
|
|
506 | (4) |
|
|
506 | (1) |
|
|
507 | (1) |
|
|
507 | (3) |
|
21.6 LGI as a practical example of MCT EAPDs |
|
|
510 | (1) |
|
21.7 Conclusions and future developments |
|
|
511 | (1) |
|
|
511 | (2) |
|
22 Room Temperature IR Photodetectors |
|
|
513 | (26) |
|
|
|
|
513 | (1) |
|
22.2 Performance of room temperature infrared photodetectors |
|
|
514 | (5) |
|
|
514 | (3) |
|
22.2.2 Reduced volume devices |
|
|
517 | (1) |
|
22.2.3 Design of high temperature photodetectors |
|
|
518 | (1) |
|
22.3 HgCdTe as a material for room temperature photodetectors |
|
|
519 | (3) |
|
22.3.1 Ultimate performance of HgCdTe devices |
|
|
519 | (2) |
|
22.3.2 Non-equilibrium devices |
|
|
521 | (1) |
|
22.3.3 3D high-temperature photodetector concept |
|
|
522 | (1) |
|
22.4 Photoconductive devices |
|
|
522 | (2) |
|
22.5 PEM, magnetoconcentration, and Dember IR detectors |
|
|
524 | (2) |
|
|
524 | (1) |
|
22.5.2 Magnetoconcentration detectors |
|
|
525 | (1) |
|
|
526 | (1) |
|
|
526 | (9) |
|
22.6.1 Dark current and resistance of near room temperature photodiodes |
|
|
527 | (1) |
|
22.6.2 Practical HgCdTe photodiodes |
|
|
527 | (8) |
|
|
535 | (1) |
|
|
535 | (4) |
Index |
|
539 | |