Muutke küpsiste eelistusi

E-raamat: Meshing, Geometric Modeling and Numerical Simulation, Volume 2: Metrics, Meshes and Mesh Adaptation

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Jan-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119384366
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Jan-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119384366
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Triangulations, and more precisely meshes, are at the heart of many problems relating to a wide variety of scientific disciplines, and in particular numerical simulations of all kinds of physical phenomena. In numerical simulations, the functional spaces of approximation used to search for solutions are defined from meshes, and in this sense these meshes play a fundamental role. This strong link between meshes and functional spaces leads us to consider advanced simulation methods in which the meshes are adapted to the behaviors of the underlying physical phenomena. This book presents the basic elements of this vision of meshing.

These mesh adaptations are generally governed by a posteriori error estimators representing an increase of the error with respect to a size or metric. Independently of this metric of calculation, compliance with a geometry can also be calculated using a so-called geometric metric. The notion of mesh thus finds its meaning in the metric of its elements.

Foreword ix
Introduction xi
Chapter 1 Metrics, Definitions and Properties
1(52)
1.1 Definitions and properties
2(4)
1.2 Metric interpolation and intersection
6(8)
1.2.1 Metric interpolation
7(6)
1.2.2 Metric intersection
13(1)
1.3 Geometric metrics
14(9)
1.3.1 Geometric metric for a curve
16(1)
1.3.2 Geometric metric for a surface
17(6)
1.3.3 Turning any metric into a geometric metric
23(1)
1.4 Meshing metrics
23(1)
1.5 Metrics gradation
24(7)
1.6 Element metric
31(7)
1.6.1 Metric of a simplicial element
31(6)
1.6.2 Metric of a non-simplicial element
37(1)
1.6.3 Metric of an element of arbitrary degree
38(1)
1.7 Element shape and metric quality
38(8)
1.8 Practical computations in the presence of a metric
46(7)
1.8.1 Calculation of the length
46(3)
1.8.2 The calculation of an angle, area or volume
49(4)
Chapter 2 Interpolation Errors and Metrics
53(40)
2.1 Some properties
54(1)
2.2 Interpolation error of a quadratic function
55(7)
2.3 Bezier formulation and interpolation error
62(24)
2.3.1 For a quadratic function
63(3)
2.3.2 For a cubic function
66(14)
2.3.3 For a polynomial function of arbitrary degree
80(5)
2.3.4 Error threshold or mesh density
85(1)
2.4 Computations of discrete derivatives
86(7)
2.4.1 The L2 double projection method
86(2)
2.4.2 Green formula
88(1)
2.4.3 Least square and Taylor
89(4)
Chapter 3 Curve Meshing
93(14)
3.1 Parametric curve meshing
95(9)
3.1.1 Curve in R3
95(4)
3.1.2 About metrics used and computations of lengths
99(4)
3.1.3 Curve plotted on a patch
103(1)
3.2 Discrete curve meshing
104(1)
3.3 Remeshing a meshed curve
104(3)
Chapter 4 Simplicial Meshing
107(34)
4.1 Definitions
108(1)
4.2 Variety (surface) meshing
109(13)
4.2.1 Patch-based meshing
110(9)
4.2.2 Discrete surface remeshing
119(1)
4.2.3 Meshing using a volume mesher
120(2)
4.3 The meshing of a plane or of a volume domain
122(14)
4.3.1 Tree-based method
123(3)
4.3.2 Front-based method
126(3)
4.3.3 Delaunay-based method
129(5)
4.3.4 Remeshing of a meshed domain
134(2)
4.4 Other generation methods?
136(5)
Chapter 5 Non-simplicial Meshing
141(54)
5.1 Definitions
142(1)
5.2 Variety meshing
143(2)
5.3 Construction methods for meshing a planar or volume domain
145(37)
5.3.1 Cylindrical geometry and extrusion method
147(1)
5.3.2 Algebraic methods and block-based methods
148(24)
5.3.3 Tree-based method
172(2)
5.3.4 Pairing method
174(2)
5.3.5 Polygonal or polyhedral cell meshing
176(1)
5.3.6 Construction of boundary layers
177(5)
5.4 Other generation methods
182(3)
5.4.1 "Q-morphism" or "H-morphism" meshing
182(1)
5.4.2 Meshing using a reference frame field
183(2)
5.5 Topological invariants (quadrilaterals and hexahedra)
185(10)
Chapter 6 High-order Mesh Construction
195(30)
6.1 Straight meshes
196(12)
6.1.1 Local node numbering
196(5)
6.1.2 Overall node numeration
201(3)
6.1.3 Node positions
204(3)
6.1.4 On filling up matrices according to element degrees
207(1)
6.2 Construction of curved meshes
208(7)
6.2.1 First-degree mesh
209(1)
6.2.2 Node creation
209(1)
6.2.3 Deformation and validation
210(1)
6.2.4 General scheme
211(4)
6.3 Curved meshes on a variety, curve or surface
215(10)
Chapter 7 Mesh Optimization
225(40)
7.1 Toward a definition of quality
226(7)
7.2 Optimization process
233(15)
7.2.1 Global methods
233(1)
7.2.1.1 Optimization of a cost function
233(1)
7.2.1.2 Iterative relaxation of the position of vertices by duality (simplices)
234(1)
7.2.1.3 Global optimization of the position of vertices (quadrilaterals and hexahedra)
235(1)
7.2.2 Local operators and local methods
236(1)
7.2.2.1 Vertex moves by barycentering
236(1)
7.2.2.2 Vertex moves and Laplacian operator
237(4)
7.2.2.3 Moving or removing vertices and flips by insertion or reinsertion
241(1)
7.2.2.4 Edge flips
241(2)
7.2.2.5 Cluster of edge flips
243(1)
7.2.2.6 Edge or face flip by reinsertion
244(1)
7.2.2.7 Edge slicing
244(1)
7.2.2.8 Removal of an edge by merging
245(1)
7.2.2.9 Metric field update
246(1)
7.2.2.10 Topological and metric criteria
246(1)
7.2.2.11 Strategies
246(2)
7.3 Planar mesh
248(2)
7.4 Surface mesh
250(1)
7.5 Volume meshing
251(3)
7.6 High-degree meshing
254(11)
Chapter 8 Mesh Adaptation
265(38)
8.1 Generic framework for adaptive computation, the continuous mesh
266(6)
8.1.1 Duality between discrete and continuous geometric entities
267(2)
8.1.2 Duality between discrete and continuous interpolation error
269(3)
8.1.3 Discrete-continuous duality in one diagram
272(1)
8.2 Optimal control of the interpolation error in Lp-norm
272(7)
8.3 Generic scheme of stationary adaptation
279(10)
8.3.1 Error estimators
282(5)
8.3.2 Interpolation of solution fields
287(2)
8.4 Unsteady adaptation
289(8)
8.4.1 Space-time error estimators based on the characteristics of the solution
290(1)
8.4.2 Extension of the error analysis for the fixed-point algorithm for unsteady mesh adaptation
291(1)
8.4.3 Mesh adaptation for unsteady problems
292(2)
8.4.4 Unsteady mesh adaptation targeted at a function of interest
294(1)
8.4.5 Conservative interpolation of solution fields
295(2)
8.5 Mobile geometry with or without deformation
297(6)
8.5.1 General context of the adaptation for mobile and/or deformable geometries
297(1)
8.5.2 ALE continuous optimal mesh minimizing the interpolation error in Lp-norm
298(2)
8.5.3 Space-time error estimator for moving geometry problems
300(3)
Chapter 9 Meshing and Parallelism
303(28)
9.1 Renumbering via a filling curve
304(3)
9.2 Parallelism: two memory paradigms and different strategies
307(5)
9.3 Algorithm parallelization for mesh construction
312(12)
9.4 Parallelization of a mesh construction process, partition then meshing
324(2)
9.5 Mesh parallelization, meshing then partition
326(5)
Chapter 10 Applications
331(22)
10.1 Surface meshing
332(2)
10.2 In computational fluid dynamics
334(7)
10.3 Computational solid mechanics
341(4)
10.4 Computational electromagnetism
345(1)
10.5 Renumbering and parallelism
346(3)
10.6 Other more exotic applications
349(4)
Chapter 11 Some Algorithms and Formulas
353(20)
11.1 Local numbering of nodes of high-order elements
354(10)
11.2 Length computations etc., in the presence of a metric field
364(5)
11.3 Quality
369(4)
Conclusions and Perspectives 373(2)
Bibliography 375(12)
Index 387
Paul Louis George is Director of Research at the French Institute for Research in Computer Science and Automation (Inria) and one of the most internationally recognized experts in meshing.

Houman Borouchaki is Professor at the University of Technology of Troyes (UTT) in France. He is an expert on meshing problems, geometric modeling and applications in solid mechanics.

Frédéric Alauzet is a researcher at Inria, both with particular expertise in meshing adaptation, error estimators, resolution methods (advanced solvers in fluid mechanics) and remeshing methods.

Adrien Loseille is a researcher at Inria, both with particular expertise in meshing adaptation, error estimators, resolution methods (advanced solvers in fluid mechanics) and remeshing methods.

Patrick Laug is a researcher at Inria with particular expertise in geometric modeling and the generation of curve and surface meshes.

Loïc Maréchal, a long-time collaborator at Inria as an engineer, is an essential reference on hexahedra.