Muutke küpsiste eelistusi

E-raamat: Meta-analysis and Combining Information in Genetics and Genomics

(Rice University, Houston, Texas, USA), (EPFL SB IMA STAT, Switzerland)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Several methods for combining information from different studies specific to genetic and genomic areas are explained by researchers in statistics and in various biological disciplines. They consider in turn combining similar genotype data, combining similar gene expression data, and combining different data types. Among their topics are combining information across genome-wide linkage scans, heterogeneity in the meta-analysis of quantitative trait linkage studies, an approach to composite hypothesis testing built on intersection-union tests and Bayesian posterior probabilities, significance testing for small microarray experiments, combining genomic data in human studies, and a misclassification model for inferring transcriptional regulatory networks. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

Novel Techniques for Analyzing and Combining Data from Modern Biological Studies
Broadens the Traditional Definition of Meta-Analysis

With the diversity of data and meta-data now available, there is increased interest in analyzing multiple studies beyond statistical approaches of formal meta-analysis. Covering an extensive range of quantitative information combination methods, Meta-analysis and Combining Information in Genetics and Genomics looks at how to analyze multiple studies from a broad perspective.

After presenting the basic ideas and tools of meta-analysis, the book addresses the combination of similar data types: genotype data from genome-wide linkage scans and data derived from microarray gene expression experiments. The expert contributors show how some data combination problems can arise even within the same basic framework and offer solutions to these problems. They also discuss the combined analysis of different data types, giving readers an opportunity to see data combination approaches in action across a wide variety of genome-scale investigations.

As heterogeneous data sets become more common, biological understanding will be significantly aided by jointly analyzing such data using fundamentally sound statistical methodology. This book provides many novel techniques for analyzing data from modern biological studies that involve multiple data sets, either of the same type or multiple data sources.

Arvustused

For someone who is interested in either metaanalysis or genomics, this book provides a great overview of both. Guerra and Goldstein have done a wonderful job in introducing the material and in organizing the collection coherently. the material is very accessible to readers of Biometrics this book is well worth having as a reference book for those interested in metaanalysis and/or genomics. Guerra and Goldstein have done an admirable job putting the collection together. Peter H. Westfall, Biometrics, December 2011

There is a particularly good chapter comparing different methods for analysing two similar microarray studies The book would be suitable for someone who is new to the analysis of high dimensional genomic data. S.E. Lazic and F. Hoffmann-La Roche, Journal of the Royal Statistical Society: Series A, Vol. 174, October 2011

the book will be most useful for students and researchers who wish to see what developments are currently in progress in this important area. That said, there is a wealth of material here for the non-expert wishing to move into the area. And, unlike some edited tomes in past ages, the articles here have clearly been carefully meshed to give a coherent picture. International Statistical Review (2011), 79, 1

Introductory Material. Similar Data Types I: Genotype Data. Similar Data
Types II: Gene Expression Data. Combining Different Data Types. References.
Index.
Rudy Guerra is a professor of statistics at Rice University.

Darlene R. Goldstein is a member of the Chair of Statistics research group in the Institut de Mathématiques at the École Polytechnique Fédérale de Lausanne (EPFL).