Muutke küpsiste eelistusi

E-raamat: Metaheuristic Algorithms in Industry 4.0

Edited by , Edited by (Universite Paris-Est Creteil, France), Edited by (MIT World Peace University, Pune, India), Edited by
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.



Due to increasing industry 4.0 practices, massive industrial process data is now available for researchers for modelling and optimization. Artificial Intelligence methods can be applied to the ever-increasing process data to achieve robust control against foreseen and unforeseen system fluctuations. Smart computing techniques, machine learning, deep learning, computer vision, for example, will be inseparable from the highly automated factories of tomorrow. Effective cybersecurity will be a must for all Internet of Things (IoT) enabled work and office spaces.  

This book addresses metaheuristics in all aspects of Industry 4.0. It covers metaheuristic applications in IoT, cyber physical systems, control systems, smart computing, artificial intelligence, sensor networks, robotics, cybersecurity, smart factory, predictive analytics and more.

Key features:

  • Includes industrial case studies. 
  • Includes chapters on cyber physical systems, machine learning, deep learning, cybersecurity, robotics, smart manufacturing and predictive analytics.
  • surveys current trends and challenges in metaheuristics and industry 4.0.

Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.

Contents

Preface

Editors

Contributors

1. A Review on Cyber Physical Systems and Smart Computing: Bibliometric
Analysis

Deepak Sharma, Prashant K. Gupta, and Javier Andreu-Perez

2. Design Optimization of Close-Fitting Free-Standing Acoustic Enclosure
Using Jaya Algorithm

Ashish Khachane and Vijaykumar S. Jatti

3. A Metaheuristic Scheme for Secure Control of Cyber-Physical Systems

Tua A. Tamba

4. Application of Salp Swarm Algorithm to Solve Constrained Optimization
Problems with Dynamic Penalty Approach in Real-Life Problems

Omkar Kulkarni, G. M. Kakandikar, and V. M. Nandedkar

5. Optimization of Robot Path Planning Using Advanced Optimization
Techniques

R. V. Rao and S. Patel

6. Semi-Empirical Modeling and Jaya Optimization of White Layer Thickness
during Electrical Discharge Machining of NiTi Alloy

Mahendra Uttam Gaikwad, A. Krishnamoorthy, and Vijaykumar S. Jatti

7. Analysis of Convolution Neural Network Architectures and

Their Applications in Industry 4.0

Gaurav Bansod, Shardul Khandekar, and Soumya Khurana

8. EMD-Based Triaging of Pulmonary Diseases Using Chest Radiographs (X-Rays)

Niranjan Chavan, Priya Ranjan, Uday Kumar, Kumar Dron Shrivastav, and Rajiv
Janardhanan

9. Adaptive Neuro Fuzzy Inference System to Predict Material Removal Rate
during Cryo-Treated Electric Discharge Machining

Vaibhav S. Gaikwad, Vijaykumar S. Jatti, Satish S. Chinchanikar, and Keshav
N. Nandurkar

10. A Metaheuristic Optimization Algorithm-Based Speed Controller for
Brushless DC Motor: Industrial Case Study

K. Vanchinathan, P. Sathiskumar, and N. Selvaganesan

11. Predictive Analysis of Cellular Networks: A Survey

Nilakshee Rajule, Radhika Menon, and Anju Kulkarni

12. Optimization Techniques and Algorithms for Dental Implants A
Comprehensive Review

Niharika Karnik and Pankaj Dhatrak

Index
Pritesh Shah is an Associate Professor at the Symbiosis Institute of Technology, Symbiosis International (Deemed University), India.

Ravi Sekhar is an Assistant Professor at the Symbiosis Institute of Technology, Symbiosis International (Deemed University), India.

Anand J. Kulkarni is an Associate Professor at the Symbiosis Center for Research and Innovation, Symbiosis International (Deemed University), India.

Patrick Siarry is a Professor of Automatics and Informatics at the University of Paris-Est Creteil, where he leads the Image and Signal Processing team in the Laboratoire Images, Signaux et Systemes Intelligents (LiSSi).